Геоинформационные системы (гис) и систематическое использование беспилотного летательного аппарата на землях с.-х. назначенияРефераты >> Технология >> Геоинформационные системы (гис) и систематическое использование беспилотного летательного аппарата на землях с.-х. назначения
Одновременно, установлено, что значение СИЯ зависят от физиологического состояния растения (сухая и влажная масса, листовой индекс из единицы площади, которая изучается), эти факты описаны в предыдущих роботах и подтверждаются нашими исследованиями.
Результаты подтверждают, что те сорта, которые имели 25.05. высокий СИЯ р - 80-100 ("Этюд", "Жизель", "Элегия Мироновськая") постепенно снижали его, возрастало одевание фотоактивной радиации (ФАР) по мере накоплення хлорофилла потом "провал", "всплеск" после дождя, потом повышения СИЯ. Эта зависимость подтверждается данными наземной метеостанции, которая установлена на исследовательском полигоне.
Мы объясняем этот факт, уменьшением содержимого хлорофилла в растениях (хлорофилл, пигменты разрушаются). В конце вегетационного периода, хлорофилл в растениях практически отсутствующий, что отображается на снимке. Т.е. эти сорта имеют более длиннее период вегетации и более длиннее срок сева.
Разработанные технические и методические подходы дали возможность создавать четкие и контрастные снимки грунта. Было установлено следующее: снимки сделанные с ДПЛА разрешают после спектральной обработки (выбора канала) устанавливать содержимое хлорофилла растениях за спектральной яркости (СИЯ). По результатам съемки на исследовательских полигонах в разных областях Украины, СИЯ существенно зависит от содержимого влаги, как в грунту, так и в растениях. Накопление хлорофилла и связанного с ним азота продлевается к середина июля, потом когда растение становится спелой наблюдается спад СИЯ. СИЯ растений изменяется после осадков (дождя). Так наблюдалось повышение СИЯ в течение нескольких часов после осадков, которое подтверждается метеорологическими данными метеостанции, которая установлена на исследовательском полигоне. Установленные контуры на орошаемых грунтах, нуждаются в дополнительных лабораторных анализах для установления их генезиса. Результаты полученные после запуска ДПЛА из катапульты свидетельствуют о 25% сохранение энергии в аккумуляторе.
Проводились исследование относительно оценки состояния плодовых насаждений на основе аэрофотосъемкки. В результате исследования вираховано высоты всех деревьев всей площади сада, количество молодых и взрослых деревьев. Для лучшей идентификации заболеваний определения состояния плодового сада использовались оба вида снимков (плановые и перспективные) из разных углов и экспозиций для определения наилучшего из углов и времени съемки. Съемку проводили из разной высоты (25-100 м). Установлениный, что наилучшие для анализа снимки было сделано из высоты 25-50 г, найоптимальнейшее время съемки - с 1100 до 1500 за неяркого солнца. Установлениный, что идентифицировать захворюваня можно, если цвет дерева будет отличаться от зеленого цвета видимого диапазона электромагнитных волн. Размеры поврежденных побегов, листков и плодов имеют сантиметровые размеры, которые дает возможность их идентифицировать с помощью АЗ (5 см/пиксель).
Основные выводы за период использования комплекса БЛА:
1.За один тур съемки БЛА, как правило, делает от 30 до 200 снимков одного поля.
2. "Сшивка" аерофото (создание ортофотоплану), базировалась на модели Брауна (коррекция дисторсий на аерофото). При этом обработка снимков выполняется в серии (блоке). Серии состоят из выравнивание снимков, построения геометрии ортофотоплану (схемы), построения текстуры плана и следующее сохранение проекта (схемы). Используются для построения ортофотоплану как плану (ось съемки аэрофотоаппарату равняется 900) так и перспективные снимки (ось колеблется от 900 до 600) (см. приложение А).
3. Установление грунтовых контуров (неоднородностей) на территории поля(ей) начиналось из облета территории ДПЛА. Потом на основе перспективных снимков устанавливали контуры, которые нуждались в проверке. После визуального установления контуров на поле, спорил грунтовой разрез со следующим описанием грунтовых горизонтов. После подтверждения наличия грунтовых контуров проводилось сшивка снимков, построение ортофотоплану, географическая привязка к соответствующему ГИС-пакете (Arcіnfo, Mapіnfo) полученных грунтовых картосхем.
4.Характерные проявления смытых контуров отображаются в оптическом диапазоне как общее повышение спектральной яркости (СИЯ) во всех каналах RGB модели. Для сравнения контуры сорняков имеют повышенные СИЯ в канале G. Во всех случаях спектральные значения фона всех полей, которые исследовались по всем каналам имеют значение до 70-78. Поэтому контуры грунтов легко идентифицируются в оптическом диапазоне.
5.На протяжении всего тура съемки наблюдались метеорологические изменения через сутки (изменение облачности), которые влияли на СИЯ полученных аерофото. При космической съемке облачность практически не дает возможности проводить идентификацию в оптическом диапазоне электромагнитных волн. Аэрофотосъемкку проводили под тучами, которые визуально имели разную высоту (от 800 г до 1 км). Для уменьшения влияния и достоверности искажения применялся метод спектральной обработки полученного ортофотоплану в среде Erdasіmage 9.1.
6. Выявлениный, что такие культуры как: гречка, подсолнечник, кукуруза скрывают неровности поля. Некоторые культуры могуть служить достоверным индикатором относительно микрорельефа поля. Кроме того, важными есть направление и время съемки. Наилучшие снимки возможно получить с 8,30-11,00 и 16,00-17,00 (при наличии солнечного света). Направление съемки важное для выявления глубины неровности (по наличию тени), т.е. направление нужно избирать таким образом, чтобы тень была бы наибольшей (см.приложение Б).
7. Аэрофотосъемкка дает возможность определять заболевание деревьев в верхней части кроны (использование плановых фотоснимков) и среднего яруса деревьев (перспективный снимок) с помощью фенотипичных индикаторов.
8. Установлена зависимость между спектральной яркостью снимку и результатами инструментальной съемки. Так контуры осолонцювання было выявлено за фактом Sі2 (спектральная яркость равняется 100) на поверхности грунта.
9. Результаты аэрофотосъемкки разрешают с высокой судьбой репрезентативности определять состояние обеспечения азотом озимой пшеницы. Так на исследовательских участках были определены участки с высоким уровнем внесения азотных удобрений (N102), и всех других (N85, N68, N51, N34). Совмещение результатов аэрофотосъемкки и прибора Spad 500 подтвердили достоверность спектрального анализа аерофото.
10. Спектральная яркость (СИЯ) посевов пшеницы яровой изменяется в зависимости от периода вегетации и условий увлажнения и резко увеличивается (на несколько десятков единиц в канале R) сразу после осадков. Характер изменения СИЯ зависит от факторов, которые могут влиять на физиологию растения, на ее листовую массу. Это могут быть вредители, осадки, антропогенный фактор (применение удобрений). АФЗ в видимом диапазоне предоставляет возможности проведения мониторинга на качественно новом уровне, если проводить ее с использованием микробеспилотной авиации