Моделирование SH-волны
при α = ReA () = 0; ImA () = 1.
Отраженный сигнал представлен только Гильберт-трансформантой первичной волны: . Угол находится из условия ReA () = 0:
.
Синус его равен:
и не намного превышает , то есть не намного больше .
Дальнейшее увеличение угла падения (α > ) приводит к перемене знака действительной части и к соответствующему инвертированию знака смещения первичной волны в суммарном отраженном сигнале.
В пределе, при : ReA; ImA и .
С увеличением угла падения при доля падающей волны с инвертированным знаком смещения в суммарной волне растет, а доля Гильберт-трансформанты уменьшается в пределе, при α = 90°, до 0.
При этом отраженный сигнал повторяет по форме и амплитуде колебаний падающую волну с инвертированным знаком смещений. Напомним, что такой же предел был выявлен и в случае (см. раздел 8.3), что вполне естественно.
Анализ закритических изменений спектрального коэффициента прохождения В и вызванных ими трансформаций неоднородных плоских волн фактически не нужен, так как имеется связь между коэффициентами рассеивания SH-волны: В = 1 + А, справедливая при любых углах падения.
Для комплексных коэффициентов рассеивания А = ReA + jImA; B = ReB + jImB имеем:
ReB + jImB = 1 + ReA + jImA.
Видно, что А и В имеют действительные части, различающиеся на единицу, и равные мнимые части:
ReB = 1 + ReA; ImB = ImA.
Напомним, что связь между А и В получена из первого граничного условия (для упругих смещений):
.
В соответствии с ним, при любых соотношениях физических свойств контактирующих на границе сред и при любом угле падения первичной SH-волны при z = 0 проходящая волна представляет собой простую сумму падающей волны u (τ) и отраженной волны .
Поэтому все трансформации отраженной волны в закритической зоне входят составной частью в изменения проходящей волны.
Вне зависимости от угла падения в этой волне всегда присутствует “постоянная" составляющая - первичная, падающая на границу волна, по предположению, не меняющаяся с изменением угла падения.
В заключение приведем цифровые оценки особых углов падения для границы раздела сред со следующими упругими параметрами:
.
Это - довольно “сильная” отражающая граница.
Ей может соответствовать, например, граница между обводненной верхней средой (где скорость S-волны резко уменьшена) и “сухим” нижним полупространством.
При нормальном падении (α = 0) SH-волны коэффициенты рассеивания равны:
.
Отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, и инвертирована по знаку смещения. Проходящая волна ослаблена по амплитуде на четверть в сравнении с падающей волной. Для выбранных параметров сред определим отношения волновых сопротивлений ≈1,667 и скоростей ≈1,414 (≈0,707). Используя их, найдем особые углы падения первичной волны:
угол , при котором А = 0, В = 1 и = 0,
= arcsin ≈38°,7;
критический угол , при котором А = 1, В = 2 и
:
.
угол , при котором ReA = 0, ImA = ImB = ReB = 1 и
, :
≈49°,4.
Как видно из этих оценок, зона наибыстрейшего и наибольшего изменения спектральных коэффициентов рассеивания (СКР) и вторичных волн весьма узка: ≈10,7. В интервале коэффициенты А и В возрастают на единицу: А от 0 до 1, В от 1 до 2. Затем, как только угол падения превысит критический, коэффициенты становятся комплексными. В интервале действительная часть А спадает от 1 до 0 (ReB от 2 до 1), а мнимая часть А и В возрастает от 0 до 1.
Вне зоны () коэффициенты рассеивания ведут себя более спокойно. При изменении от 0 до отрицательный коэффициент отражения уменьшается (по модулю) от - 0,25 до 0. В ближней к источнику зоне, при , СКР изменяются незначительно. Соответственно, и вторичные волны в этой зоне изменяются мало.
С увеличением различия свойств контактирующих на границе сред все особые точки () смещаются в сторону меньших углов падения, а интервалы между ними уменьшаются. Наоборот, для границ раздела сред с близкими упругими константами критический угол большой и углы отдалены от него.