Моделирование SH-волны
Рефераты >> Геология >> Моделирование SH-волны

При нормальном падении все косинусы равны единице, коэффициент отражения отрицателен, а коэффициент прохождения меньше единицы. Следовательно, в этом случае отраженная волна противоположна падающей по знаку смещений (отражение с потерей полуволны), а проходящая волна имеет меньшую амплитуду, чем волна падающая:

при α = 0 и A < 0 и B < 1 и = B · u (τ) < u (τ).

При критическом угле падения угол прохождения и А = 1, В = 1 + А = 2. Отраженная волна имеет ту же амплитуду, что и волна падающая, а проходящая волна по амплитуде вдвое превосходит ее:

при А = 1 и В = 2 и .

Видно, что и при коэффициент отражения меняет свой знак: при нормальном падении А < 0, а при А = 1 > 0, и существует угол , при котором А = 0 и , В = 1 и , - отраженной волны нет, есть только проходящая вторичная волна с амплитудой, равной амплитуде падающей волны. Синус этого угла определен ранее, но, так как , формулу для удобнее записать, умножив числитель и знаменатель подкоренного выражения на - 1:

.

При дальнейшем увеличении угла падения, когда , коэффициент отражения А стремительно возрастает от 0 при до 1, приодновременно и также быстро В растет от 1 до 2. Однако, более существенные изменения коэффициентов А и В и вторичных волн - отраженной и проходящей - происходят, когда угол падения становится больше критического. Если (напомним, ), в соответствии с законом Снеллиуса:

и

синус угле прохождения при закритическом падении становится больше единицы (?!). Это не может быть в области действительных тригонометрических функций. Определим косинус угле прохождения по обычной формуле:

, так как .

Синусу, большему 1, соответствует чисто мнимый косинус.

Встретившись с этой неожиданной трансформацией косинуса, мы, из осторожности, записали оба возможных знака (±) корня. Установим, какой из них имеет физический смысл. Для этого вспомним описание проходящей волны (в волновой аргумент которой и входит ) и ее спектра:

Подставим в последнее определение

:

Наличие мнимой единицы в определении косинуса выводит зависимость от z из функции запаздывания и превращает ее в амплитудный множитель . Если определить , то с ростом z (то есть, при удалении от границы и от предполагаемого источника колебаний) амплитуда гармоники частоты ω неограниченно возрастает:

при z → ∞ .

Физически это абсолютно невозможно, поэтому из двух знаков мнимого косинуса следует выбрать минус: . Тогда амплитуда вторичной волны, определяемая множителем , стремится к нулю при удалении от границы (z → ∞).

Однако, спектр импульсного сигнала определен на всем бесконечном интервале частот: - ∞ ≤ ω ≤ ∞ и в волновом импульсе присутствуют как гармоники с положительными частотами, так и гармоники с ω < 0. Знак минус в определении “правильно действует" только для положительных частот. Для отрицательных частот знак минус гаснет и амплитуда гармоники частоты ω < 0 неограниченно возрастает по мере удаления от границы z → ∞. Это - снова нереально.

Чтобы обеспечить затухание всего спектра волны как для положительных, так и для отрицательных частот, определим:

,

где sgn (ω) - знаковая функция частоты:

.

В таком определении амплитудный множитель обеспечивает затухание гармонических составляющих со всеми частотами: если ω > 0, sgn (ω) = + 1 и - функция, убывающая с ростом z, если же ω < 0, sgn (ω) = - 1 и - так же убывающая по мере удаления от границы функция.

Обратим внимание на то, что с ростом абсолютного значения частоты ω затухание ускоряется - чем выше частота гармоники, тем быстрее она затухает с ростом z.

В функции запаздывания спектра проходящей волны осталась лишь пространственная переменная x: . Эта функция соответствует скольжению плоской волны вдоль границы со скоростью , меньшей истинной скорости волны в нижней среде, так как . Эта скользящая с “неправильной" скоростью волна имеет амплитуду, экспоненциально уменьшающуюся с глубиной, вдоль фронта волны. Эти две особенности закритической проходящей волны дают основание для ее специального наименования - она называется неоднородной плоской волной, в соответствии с характером распределения ее амплитуды по фронту.


Страница: