Моделирование SH-волны
Содержание
Введение
I. Теоретическая часть
1. Описание волн и создаваемых ими на границе напряжений
2. Граничные условия и спектральные коэффициенты рассеивания
3. Волны рассеивания при падении SH-волны на кровлю низкоскоростной среды
4. Волны рассеивания при падении SH-волны на кровлю высокоскоростной среды
II. Расчётная часть
1. Падение SH-волны на кровлю низкоскоростной среды
2. Падение SH-волны на кровлю высокоскоростной среды
Список литературы
Введение
Сейсморазведка является одним из важнейших видов геофизической разведки земных недр. Она включает в себя комплекс методов исследований геологического строения земной коры, основанных на изучении особенностей распространения в ней искусственно возбуждённых упругих волн. Вызванные взрывом или другим способом упругие волны, распространяясь во всех направлениях от источника колебания, проникают в толщу земной коры на большие глубины. В процессе распространения в земной коре упругие волны претерпевают процессы отражения и преломления. Это приводит к тому, что часть сейсмической энергии возвращается к поверхности Земли, где вызывает дополнительные сравнительно слабые колебания. Эти колебания регистрируются специальной аппаратурой. Полученные записи подвергаются глубокой обработке. Анализируя и интерпретируя полученные после обработки результаты, квалифицированный специалист-геофизик может определить глубину залегания, форму и свойства тех слоёв, на поверхности которых произошло отражение или преломление упругих волн.
Упругие волны делятся на объёмные и поверхностные. Традиционно в сейсморазведке наибольшее применение нашли объёмные волны: продольные (P-волны) и поперечные (S-волны). Скорости Vp всегда больше, чем Vs.
В данной курсовой работе рассматривается распространение SH-волны в различных геологических условиях среды.
I. Теоретическая часть
Пусть верхняя среда имеет скорость поперечной волны , плотность и модуль сдвига , а нижняя среда характеризуется параметрами . Напомним, что , и для сокращения письма опустим индекс поперечной волны (S) и будем обозначать , не забывая, конечно, о том, что в этом разделе речь идет о поперечной горизонтально-поляризованной волне, падающей на плоскую, горизонтальную, разрывно-резкую границу раздела.
1. Описание волн и создаваемых ими на границе напряжений
Пусть первичная плоская SH-волна падает на границу (z = 0) под углом α и имеет фронт, параллельный оси Oy. Она описывается вектором смещения , также ориентированным вдоль Оу, но не зависящим от у:
.
Как отмечалось, SH-волна в выбранных условиях порождает на границе только монотипные (также SH) вторичные волны. Отраженная SH-волна распространяется вверх, в противоположном по отношению к первичной волне направлении. Поэтому в ее волновом аргументе переменная z отрицательна:
Проходящая SH-волна распространяется в том же направлении, что и падающая волна (вниз), но во второй нижней среде со скоростью и под углом :
.
Закон Снеллиуса для SH-волн имеет вид:
Горизонтальное вдоль Оу смещение SH-волн создает на границе лишь касательное напряжение:
в соответствии с законом Гука, где - сдвиговая деформация в плоскости zOy:
.
Но SH-волна несет смещение, ориентированное вдоль Оу, и для нее .Кроме того, фронты всех волн параллельны той же оси Оу, и поэтому .
Следовательно, для касательного напряжения можно записать:
Напряжение, создаваемое на границе падающей волной, описывается так:
Отраженная волна создает на границе касательное напряжение:
Наконец, проходящая волна создает напряжение:
Поскольку , для унификации обозначений будем всегда использовать угол .
2. Граничные условия и спектральные коэффициенты рассеивания
Из общих трех граничных условий для компонент векторов смещения и стольких же граничных условий для компонент напряжений в условиях рассматриваемой в данном разделе задачи актуальны лишь два граничных условия: равенство суммарных у-компонент смещений (кинематическое) и равенство суммарных касательных напряжений (динамическое).
На границе, при z = 0, сумма смещений падающей и отраженной волн должна быть равна смещению проходящей волны:
При подстановке z=0 волновые аргументы всех трех волн равны:
то есть , так как t и x - общие время и координата точки границы, а множители при х равны в соответствии с законом Снеллиуса. Поэтому первое граничное условие дает уравнение:
или в спектрах:
.
Обратим внимание на отсутствие в первом уравнении углов падения, отражения и прохождения. Это значит, что уравнение должно быть справедливом при любом угле падения 0 ≤ α ≤ π⁄2.
Динамическое граничное условие требует, чтобы на границе, при z=0, сумма напряжений, создаваемых падающей и отраженной волнами, равнялось напряжению, создаваемому проходящей волной: