Моделирование SH-волны
.
Например, при км/с, г/cм, км/с, г/смкоэффициенты рассеивания имеют значения: A = 0,25, В = 1,25. При нормальном падении отраженная волна имеет амплитуду, в четыре раза меньшую амплитуды первичной волны, а проходящая волна превосходит ее по амплитуде на 25%. Подстановка теоретически возможного предела изменения угла падения дает и А = - 1, а В = 0. Отраженная волна имеет ту же амплитуду, что и волна падающая, но инвертирована (обращена) по знаку смещения в сравнении с ней. Проходящая волна отсутствует, что вполне естественно. Обратим внимание на то, что при изменении угла падения от 0 до коэффициент отражения меняет знак - при α = 0 A > 0, а при α = А<0. Значит, при некотором угле падения коэффициент отражения равен 0 и отраженная волна отсутствует (!). Так как В = 1 + А, то при α = В = 1 и проходящая волна имеет в точности ту же амплитуду, что и первичная волна. Найдем этот угол из условия А = 0:
.
По закону Снеллиуса
.
Поэтому условие А = 0 принимает вид:
.
Отсюда, после преобразований найдем по его синусу:
.
При уменьшении различия физических свойств плотности пород сближаются более быстро, чем скорости. При :
.
В пределе, когда и . Следовательно, в рассматриваемом случае угол падения , при котором А = 0, находится в диапазоне углов падения, больших , удаляясь от этой величины в сторону больших углов по мере увеличения различий физических свойств контактирующих сред (контрастности границы).
Для выбранных ранее в качестве примера параметров сред sin 0,84 и . Значит, в диапазоне углов падения от 0° до 57° коэффициент отражения А положителен, коэффициент прохождения В >1. При А = 0, В = 1, а при α > А < 0, В < 1. При углах, меньших , отраженный сигнал имеет тот же знак смещения, что и первичная волна, при угле падения, равном , отраженная волна отсутствует, а при углах, больших , она подобна первичной волне с инвертированным знаком смещения.
Для выбранных параметров разреза на рис.9 приведен единый график А (α) и В (α) = 1 + А (α), снабженный двумя шкалами оси ординат со смещенными на единицу нулями. В нижней части рисунка изображены схематические импульсоиды падающей волны u (t) и вторичных волн - отраженной и проходящей для различных углов падения.
Как видно из рисунка, при малых углах падения изменения спектральных коэффициентов А и В незначительны. Соответственно, малы и изменения амплитуды вторичных волн. Это является благоприятным фактором для сейсмической разведки.
Рис.9
С приближением угла падения к спад кривой ускоряется, отраженная волна затухает до нуля при , а амплитуда проходящей волны стремится к амплитуде волны падающей.
При углах, больших , происходит стремительное падение кривой к пределам: А (α → 90°) → -1; B (α → 90°) → 0. Отраженная волна, поменяв знак смещения на обратный при , стремится к падающей волне с инвертированным знаком смещения. Проходящая волна столь же быстро затухает до нуля.
4. Волны рассеивания при падении SH-волны на кровлю высокоскоростной среды
Нижняя среда - более плотная и имеет большую скорость распространения волны, чем верхняя:.
и .
В соответствии с законом Снеллиуса, угол прохождения всегда больше угла падения и равному ему угла отражения: . При изменении угле падения от нуля до теоретически возможного предела 90° угол прохождения растет быстрее и становится равным 90° при . В этом случае
и ,
где - критический угол падения. При таком падении проходящая волна не уходит в глубь нижней среды, а скользит вдоль границы со скоростью .Эта скользящая волна порождает в верхней низкоскоростной среде вторичную волну, называемую в сейсморазведке головной или преломленной. На регистрации таких волн основан второй метод сейсморазведки - метод преломленных волн (МПВ), - первым и основным, но вторым по времени возникновения, является метод отраженных волн (МОВ).