Технология производства полупроводниковых материалов типа А2В6Рефераты >> Технология >> Технология производства полупроводниковых материалов типа А2В6
Нередко метод реакции переноса применяют не только для выращивания монокристаллов или пленок, но и для очистки материала от примесей.
Методы переноса в протоке.
Во многих случаях, например, для выращивания эпитаксиальных пленок элементарных полупроводников или соединений с незначительными отклонениями от стехиометрии процессы переноса намного удобнее проводить в проточных системах. В проточных системах реакция у источника контролируется независимо, т. е. значения Т и Р в зоне источника не связаны со значениями Т и Р в зоне кристаллизации Скорость переноса молекул летучего соединения может регулировался скоростью потока газа-носителя, что позволяет увеличить скорость переноса Наконец, в проточном методе легко вводить легирующие примеси или избыток одного из компонентов соединения Расчет скорости переноса в проточных системах значительно проще, а потому легче установить условия проведения процессов. Перенос осуществляется простои гетерогенной обратимой реакцией
IA(тв) + kB(г) Û jС(г)
которая происходит в аппарате, изображенном на рис. 636. Газ — реагент В проходит под исходным веществом А и образует соединение С, которое в интервале температур Т2®Т1 находится в газообразном состоянии. Молекулы соединения С, увлекаемые избытком газа В или инертным газом (например, гелием или аргоном), переносятся в зон) кристаллизации, находящуюся при температуре Т1, где происходит обратная реакция разложения молекул С на твердое вещество А и газ В. Эта реакция происходит как па стенках аппарата, так и на монокристаллических подложках-затравках, предварительно введенных в аппарат. Поскольку поверхность подложки значительно меньше поверхности стенок аппарата, то выход материала, нарастающего на подложку, невелик.
Обозначим через в число молей газа реагента В, вводимого в аппарат, через п'В —число молей газа В, находящихся в свободном состоянии в зоне Т1 , через п"В —число молей газа В в зоне Т2, через п’с и п"с число молен соединения С соответственно в зонах Т1 и Т2. Баланс компонента В
nB=n’B+k/j *n’C= n’’B+k/j n’’C 6.57
Количество вещества А, вступающее в реакцию с В при температуре Т2, в пересчете на моль вводимого в систему реагента В, составляет i/j* n’C/nB.
Количество вещества А, выводимого из системы током газа T1 ,i/j· n’C/nB.
Количество вещества А (nA), выделяющегося при температуре T1,
NA/nB = i/j· n’C/nB.– i/j· n’’C/nB.= i/j·Dn’C/nB.(6,58)
Поскольку имеем дело с газом, целесообразно вводить в расчеты значения парциальных давлений всех компонентов РВ и РС- Тогда можно написать:
nC/nB=PC/PB (1/(1-PC/PB(j-k/j))
Если j = k, то выражение в скобках равно единице. Если же j=/=k, но PC<<PB , то и тогда выражение в скобках можно принять равным единице. Объединяя уравнения (6.57) и (6.58), находим количество перенесенного вещества А:
nA = i/j·DPCnB/PB 6.60
Зная величину констант равновесия для прямой и обратной реакций при температурах Т1 и Т2 и принимая, что общее давление в системе равно РB(РB>РC), можно рассчитать DРс, а следовательно, и выход реакции.
Расчеты эффективности реакций переноса сводятся, таким образом, к определению разности парциальных давлений молекул-переносчиков в зонах источника и кристаллизации. Перенос вещества существует тогда, когда эта разность имеет достаточно большое значение.
1.2. Соединения A11 BVI . Общие свойства.
К группе алмазоподобных полупроводниковых соединений AnBVI относятся следующие соединения: CdS, CdSe, ZnS, ZnSe, ZnTe, CdTe, HgSe, HgTe. Межатомные связи осуществляются sp3 электронами, т. е. принимается, что связи носят преимущественно ковалентный характер, хотя разности электроотрица-тельностей атомов компонентов и доля ионной компоненты связи имеют большие значения. Первые четыре соединения кристаллизуются преимущественно в решетке типа вюрцита, а остальные в решетке типа сфалерита. В табл. 10.8 представлены экспериментально определенные параметры решетки, расстояния между атомами А и ближайшие расстояния между разнородными атомами А—В, определенные экспериментально и рассчитанные согласно значениям ковалентных радиусов.
Таблица 10.8
Соединения ZnS ZnSe ZnTe CdS CdSe CdTe HgSe HgTe |
a, A |
d(A — B) (эксперимент) |
d(A— A) 3,82 4,01 4,32 4,12 4,28 4,58 4,30 4,57 |
d(A— В) ковалентные (расчет) | |
5,4093 5Д687 Ь,Ю37 5,820 6,05 6,481 0,084 6,460 |
2,34 2,45 2,0t 2,52 2,62 2,80 2,63 2,80 | ||||
2,35 2,45 2,63 2,52 2,02 2,80 2,62 2,РО |
Сравнение экспериментально определенных межатомных расстояний с расчётными, для которых использовались значения тетраэдрических ковалентных радиусов, показывает, что характер связей в этих соединениях преимущественно ковалентный (тетраэдрические радиусы элементов; Zn—1,31; Cd—1,48; Hg—1,48; S—1,04; Se—1,14; Те—1,32).
Как и в случае соединений АШВV, при изменении среднею атомного веса соединения наблюдаются закономерные изменения запрещенной зоны, температуры плавления и ряда других параметров. Увеличение ионной составляющей связи (по сравнению с соединениями AIIIBV) проявляется в более низких значениях подвижностей. Структурно-чувствительные свойства чистых и легированных соединений AITBVI в значительной мере определяются природой и концентрацией точечных дефектов, обусловливающих отклонение от стехиометрии.
Измерения проводимости чистых соединений AIIBVI показывают, что окислы, сульфиды и селениды цинка, кадмия и ртути, при любых условиях изготовления обладают только электронной электропроводностью. Среди теллуридов теллурид цинка всегда обладает дырочной электропроводностью, а теллуриды кадмия и ртути могут быть получены как n-, так и p-типа, в зависимости от условий изготовления.
Причины, обусловливающие преимущественное проявление того или иного типа электропроводности. Величина проводимости всех чистых соединений АIIВVI может быть значительно изменена (на несколько порядков) путем термообработки монокристаллов в парах компонентов. Это свидетельствует о том, что все соединения АIIВVI являются нестехиометрическими, с довольно широкой областью существования тетраэдрической фазы.