Технология производства полупроводниковых материалов типа А2В6
Рефераты >> Технология >> Технология производства полупроводниковых материалов типа А2В6

При проведении процессов в непрерывно откачиваемых ваку­умных камерах наименее контро­лируемым и наименее изученным является влияние всегда при­сутствующих остаточных газов и паров. При давлении остаточ­ных газов в рабочей камере 10-6 — 10-4 мм рт. ст. число газовых молекул, бомбардирующих поверхность роста, часто сравнимо с числом атомов конденсируемого пара (1014—1015 aro«oe/c.u2X Хсек). Остаточные газы, способные хемосорбировать на поверх­ности роста и входить в решетку кристалла, безусловно оказыва­ют вредное влияние на скорость роста, совершенство и свойства растущего кристалла. Влияние же инертных газов, по-видимому, незначительно, а в отдельных случаях может быть даже благо­творным. Выращивание кристаллов методом конденсации паров обычно проводится в тщательно отгазированных герметичных системах, в которых остаточное давление химически активных га­зов (азот, кислород, водород, углеводороды) не должно превы­шать 10~8—10 -10 мм рт. ст, тогда как остаточное давление инерт­ных газов порядка 10 -6 мм рт. ст. может считаться вполне прием­лемым.

Процессы кристаллизации из паровых пучков принято ха­рактеризовать коэффициентом конденсация а. Коэффициент кон­денсации определяется как отношение числа атомов, встроившихся в решетку, к числу атомов, достигших поверхности конденса­ции Процесс конденсации можно разбить на три стадии:

1) первое соударение атомов пара с подложкой, при котором рассеивается большая часть их кинетической энергии;

2) адсорбция атома;

3) перемещение атомов по поверхности, приводящее либо к встраиванию атома г, кристалл, либо к ею повторному испа­рению. Поэтому величина коэффициента конденсации опреде­ляется скоростью рассеяния энергии атома (которая зависит от температуры подложки, от присутствия на ней монослоя «холод­ных» атомов инертного газа), теплотой адсорбции подложки (влияние чистоты поверхности подложки) и микрорельефом по­верхности (плотность мест закрепления атомов в решетку). Ве­личина коэффициента конденсации зависит также от природы атомов.

Таким образом, основными технологическими факторами, определяющими возможность получения методом конденсации монокристаллических образований с контролируемыми свойства­ми, являются: природа, кристаллографическая ориентация и со­стояние поверхности подложки, на которую производится нара­щивание, выбор величины пересыщения и температуры подлож­ки, при которых обеспечивается с одной стороны закономерное встраивание атомов в решетку растущего кристалла, а с другой стороны установление заданного химического состава растущего кристалла.

Управление составом кристалла, который образуется кон­денсацией паров нескольких элементов, является одной из наи­более трудных задач. Коэффициент конденсации зависит от при­роды конденсирующихся атомов; значит состав образующегося кристалла не идентичен составу паровой фазы и должен зави­сеть также от природы подложки. Создание многокомпонентной паровой фазы заданного состава также сопряжено со значитель­ными трудностями.

Как уже отмечалось, отклонения от стехиометрии соединений возникают в результате того, что состав паровой фазы над кри­сталлом, как правило, не идентичен составу кристалла. Если в качестве источника брать заранее синтезированные кристаллы од­ного и того же соединения, но с различными отклонениями от стехиометрии, то составы паровой фазы должны быть различными . В результате различия коэффициентов конденсации у раз­ных атомов соединения состав кристалла может оказаться от­личным от состава источника. С этой точки зрения выращивание кристаллов в запаянных ампулах со строго локализованной по­верхностью конденсации (см. рис. 6.35) имеет преимущества по сравнению со схемой рис. 6.34, где только часть атомов паровой фазы конденсируется на поверхности роста. Чем больше разли­чие в давлении насыщенных паров компонентов, тем труднее -уп­равлять составом паровой фазы, и приходится использовать раз­дельное испарение (или возгонку) компонентов, кристаллизую­щегося вещества.

Состав паровой фазы над многокомпонентным кристаллом или над его расплавом при не слишком малых плотностях паро­вых пучков должен быть различным, ввиду малой скорости диф­фузионных процессов в кристалле и быстрого выравнивания со­става в расплавах.

При испарении бинарного расплава парциальное давление пара компонента в первом приближении принимается пропорци­ональным его молярной доле в расплаве (закон Рауля):

PA=P0ANA;

(P0A – PA)/ P0A= DPA/ P0A= NB

DPB/P0B = NA (NA–NB=1)

Pобщ=PA+PB=P0ANA+P0BNB;

PA/PB=NA/NB·P0A/P0B;

Следовательно, состав расплава и состав паровой фазы не­прерывно изменяются стечением процесса (дистилляция). В этом случае также целесообразно использовать раздельное испарение чистых компонентов.

В настоящее время метод конденсации компонентов полупро­водниковых материалов применяют для:

1) изготовления топких эпитаксиальных пленок полупровод­никовых элементов и соединений;

2) выращивания крупных монокристаллических слитков со­единении, все компоненты которых обладают в технологически приемлемой области температур значительными и сравнимыми давлениями паров;

3) выращивания небольших монокристаллов некоторых полу­проводниковых соединений и их твердых растворов.

Метод диссоциации или восстановления газообразных соединений

Источником материала для роста кристалла могут служить легколетучие химические соединения компонентов, которые под­вергаются термической диссоциации или восстановлению соот­ветствующим газообразным восстановителем на поверхности ро­ста, например:

SiCI4 + 2H2 ÛSi + 4HCl; SiH4 Û Si + 2H2 .

Процессы кристаллизации осуществляются в этом случае в две последовательные стадии' 1) выделение вещества в результате химической реакции разложения соединения и 2) встраивание атомов в решетку кристалла. Для выделения вещества исполь­зуются гетерогенные обратимые реакции, константы равновесия которых зависят, как обычно, от температуры и концентраций всех газообразных компонентов. Это означает, что даже при не­больших изменениях условий возможен обратный химический процесс, т. е. вместо кристаллизации вещества его растворение. Поскольку при реакции разложения выделяются газообразные продукты, для достижения стационарного, равномерного процес­са, их необходимо непрерывно удалять, для чего всегда целесо­образно использовать проточные системы.

Количество кристаллизующегося вещества, выделяемое в еди­ницу времени, определяется выходом реакции разложения со­единения при данных температуре, концентрациях компонентов реакции и скорости протекания газовой смеси.

Известно, что при реакции, протекающей на поверхности раз­дела де},\ фаз, всегда наблюдается резкое снижение энергии ак­тивации по сравнению с тем же процессом, протекающим цели­ком в паровой фазе. Поверхность раздела фаз играет в этом случае роль катализатора реакции. Каталитическая активность поверхности зависит от природы вещества и его агрегатного со­стояния. Так, например, было установлено, что каталитическая активность расплавленною кремния выше его активности в твер­дом состоянии (при температурах, близких к температуре плав­ления). Следовательно, можно ожидать, что при идентичных условиях проведения процесса количество вещества, выделяю­щееся в начальный момент на различных поверхностях (напри­мер, германия на германии и на флюорите), может быть раз­лично.


Страница: