Производство керамзита
Рефераты >> Технология >> Производство керамзита

Испытание керамзитового гра­вия в цилиндре дает лишь условную относительную харак­теристику его прочности, причем сильно заниженную. Установлено, что дей­ствительная прочность керамзита, определенная при испы­тании в бетоне, в 4-5 раз превышает стандартную харак­теристику. К такому же выводу на основе опытных данных пришли В. Г. Довжик, В. А. Дорф, М. 3. Вайнштейн и дру­гие исследователи.

Стандартная методика предусматривает свободную засыпку керамзитового гравия в цилиндр и за­тем сдавливание его с уменьшением первоначального объе­ма на 20%. Под действием нагрузки прежде всего проис­ходит уплотнение гравия за счет некоторого смещения зе­рен и их более компактной укладки. Основываясь на опыт­ных данных, можно полагать, что за счет более плотной укладки керамзитового гравия достигается уменьшение объема свободной засыпки в среднем на 7%. Следователь­но, остальные 13% уменьшения объема приходятся на смятие зерен (рис.1).Если первоначальная высота зер­на D, то после смятия она уменьшается на 13%.

Рис. 1. Схема сдав­ливания зерен керам­зита при испытании Рис.2. Схема укладки зерен керамзита

Высококачественный керамзит, обладаю­щий высокой прочностью, как правило, харак­теризуется относительно меньшими, замкну­тыми и равномерно распределенными порами. В нем достаточно стекла для связывания час­тичек в плотный и прочный материал, образу­ющий стенки пор. При распиливании гранул сохраняются кромки, хорошо видна корочка. Поверхность распила так как материал мал

Водопоглощение заполнителя выражается в процентах от веса сухого мате­риала. Этот показатель для некоторых видов пористых заполнителей нормируется (напри­мер, в ГОСТ 9759—71). Однако более нагляд­ное представление о структурных особенностях заполнителей дает показатель объемного водопоглощения.

Поверхностные оплавленные корочки на зернах керамзита в начальный период (даже при меньшей объемной массе в зерне и большей пористости) имеют почти в два раза ниже объемное водопоглощение, чем зерна щебня. Поэтому необходима технология гравиеподобных заполнителей с поверхностной оплавленной корочкой из перлитового сырья, шлаковых расплавов и других попутных про­дуктов промышленности (золы ТЭС, отходы углеобогащения). Поверхностная корочка керамзита в первое время способна задержать проникновение во­ды вглубь зерна (это время соизмеримо со временем от изготовления легкобетонной сме­си до ее укладки). Заполнители, лишенные корочки, поглоща­ют воду сразу, и в дальнейшем количество ее мало изменяется

Между водопоглощением и прочностью зе­рен в ряде случаев существует тесная корре­ляционная связь. Чем больше водопоглощение, тем ниже прочность пористых заполнителей. В этом проявляется дефектность структуры ма­териала. Например, для керамзитового гра­вия коэффициент корреля­ции составляет 0,46. Эта связь выявляется более отчетливо, чем связь прочности и объем­ной массы керамзита (коэффициент корреля­ции 0,29).

Для снижения водопоглощения предпринимаются попытки предварительной гидрофоби-зации пористых заполнителей. Пока они не привели к существенным положительным ре­зультатам из-за невозможности получить не­расслаивающуюся бетонную смесь при одно­временном сохранении эффекта гидрофобизации.

Особенности деформативных свойств предопределяются пористой структурой заполнителей. Это, прежде всего, отно­сится к модулю упругости, который существен­но ниже, чем у плотных заполнителей Собственные деформации (усадка, набуха­ние) искусственных пористых заполнителей, как правило, невелики. Они на один порядок ниже деформаций цементного камня. При исследованиях деформаций керамзита все образцы при насыщении водой дают набу­хание, а при высушивании — усадку, но вели­чина деформаций разная. После первого цик­ла половина образцов показывает остаточное расширение, после второго — три четверти, что свидетельствует об изменении структуры ке­рамзита. Средняя величина усадки после пер­вого цикла 0,14 мм/м, после второго — 0,15 мм/м. Учитывая, что гравий в бетоне на­сыщается и высушивается в меньшей степени, реальные деформации керамзита в бетоне со­ставляют лишь часть этих величин. Пористые заполнители оказывают сдержи­вающее влияние на деформации усадки (и ползучести) цементного камня в бетоне, в ре­зультате чего легкий бетон имеет меньшую деформативность, чем цементный камень.

Другие важные свойства пористых заполни­телей, влияющие на качество легкого бетона— морозостойкость и стойкость против распада (силикатного и железистого), а также содер­жание водорастворимых сернистых и серно­кислых соединений. Эти показатели регламен­тированы стандартами.

Искусственные пористые заполнители, как правило, морозостойки в пределах требований стандартов. Недостаточная морозостой­кость некоторых видов заполнителей вне бетона не всегда свидетельствует о том, что легкий бетон на их основе также неморозо­стоек, особенно если речь идет о требуемом количестве циклов 25—35. Заполнители лег­ких бетонов, предназначенных для тяжелых условий эксплуатации, не всегда удовлетворя­ют требованиям по морозостойкости и потому должны тщательно исследоваться.

На теплопроводность пористых за­полнителей, как и других пористых тел, влия­ют количество и качество (размеры) воздуш­ных пор, а также влажность. Заметное влия­ние оказывает фазовый состав материала. Аномалия в коэффициенте теплопроводности связана с наличием стекло­видной фазы. Чем больше стекла, тем коэффи­циент теплопроводности для заполнителя од­ной и той же плотности ниже. С целью стиму­лирования выпуска заполнителей с лучшими теплоизоляционными свойствами для бетонов ограждающих конструкций предлагают нор­мировать содержание шлакового стекла (на­пример, для высококачественной шлаковой пемзы 60—80%) .

Искусственные пористые пески — это в ос­новном продукты дробления пористых куско­вых материалов (шлаковая пемза, аглопорит) и гранул (керамзит). Специально изготовлен­ные вспученные пески (перлитовый, керамзи­товый) пока не занимают доминирующего по­ложения.

Большое преимущество дробленых песков — возможность их производства в комплексе с производством щебня. Однако это обстоятель­ство обусловливает и существенные недостат­ки в качестве песка. Являясь попутным про­дуктом при дроблении материала на щебень, песок в ряде случаев не соответствует требуе­мому гранулометрическому составу для про­изводства легкого бетона. Очень часто песок излишне крупный, не содержит в достаточном количестве наиболее ценной для обеспечения связности и подвижности бетонной смеси фрак­ции размером менее 0,6 мм

Насыпная объемная масса пористых песков еще в меньшей степени, чем крупных заполни­телей, характеризует их истинную «легкость». Малая объемная масса песка часто достига­ется за счет не внутризерновой, а междузер­новой пористости вследствие специфики зернового состава (преобладание зерен одинакового размера). При введении в бетонную смесь та­кой песок не облегчает бетон, а лишь повы­шает его водопотребность. Очевидно, для улуч­шения качества пористого песка необходим специальный технологический передел дробле­ния материала на песок заданной грануломет­рии, а не попутное получение песка при дроб­лении на щебень.


Страница: