Физическое описание явления фильтрации жидкости
(17)
где ==- главные нормальные фиктивные напряжения, аq среднее напряжение.
Величину q можно связать с давлением р, если рассматривать напряженные состояние в пласте. Пусть Н - глубина залегания пласта, h-его мощность, а r0 - средняя плотность горных пород. Обыкновенно нефтяные пласты располагаются на значительной глубине под дневной поверхностью и их мощность мала сравнительно с глубиной залегания, т. е. h<<H. В этом случае удается связать изменение величины q с изменением давления р. В самом деле, лежащие над пластом горные породы поддерживаются скелетом пласта и насыщающей пласт жидкостью, так что вес вышележащих горных пород уравновешивается системой напряжений в пористой среде и гидродинамическим давлением жидкости. Составляющую пласт системы жидкость - пористая среда можно представить себе как некоторую деформированную систему, касательные напряжения в которой совпадают с касательными напряжениями в пористой среде, а нормальные напряжения равны сумме истинных нормальных напряжений, действующих в пористой среде, и доли нормальных напряжений, воспринимаемых жидкостью (эта доля равняется, очевидно, произведению пористости на давление жидкости). Имеем, таким образом, выражение для компонента суммарного напряжения δij:
|
Пусть р- суммарная плотность системы жидкость - пористая среда, а gi - компонента вектора ускорения силы тяжести по оси хi. Тогда уравнение равновесия системы жидкость - пористая среда имеет вид:
|
(19)
Считая жидкость слабосжимаемой, можно положить в уравнении (19) р=р*, где р* - постоянное исходное значение суммарной плотности. Таким образом, суммарное уравнение равновесия системы жидкость - пористая среда окончательно записывается в виде:
|
(20)
и, как видно, это уравнение не зависит от времени. Покажем теперь, что и суммарные напряжения на кровле и подошве пласта (т. е. на верхней и нижней ограничивающих пласт поверхностях) можно с большой степени точности считать постоянными. Физически объяснения этого факта сводится к следующему: упругое смещение, обусловливаемое изменением давления жидкости, насыщающей породу пласта, пропорциональное, очевидно, мощности пласта, распределяется на всю огромную толщину Н вышележащего массива горных пород, так что соответствующие относительные деформации в этом массиве малы и, следовательно, малы возникающие в нем дополнительные напряжения, в частности дополнительные напряжения на кровле и подошве пласта.
|
(21)
Значение dрмакс/r0gH обычно не превышает одной-двух десятых; величина h/Н исчезающе мала, так что изменение напряжения во всем вышележащем массиве и, в частности, на его границах мало сравнительно с исходным напряжением. Поэтому можно считать, что при изменении давления жидкости в пласте напряжения, действующие на кровле и подошве пласта, остаются постоянным.
Предыдущее рассуждение существенно основано на том, что модуль Юнга системы жидкость - пористая среда Е и модуль вышележащего массива горных пород Е1 имеют одинаковый порядок величины (что обычно имеет место в действительности). Если бы эти модули Юнга сильно отличались между собой, то выражение (21) содержало бы дополнительный множитель Е1/Е и при Е1>> Е отношение напряжений могло бы и не быть малым. Физически это означает, что в случае, когда вышележащая толща сложена из очень жестких пород, могут образоваться своды, и при изменении давления жидкости напряжения на кровле и подошве пласта будут меняться.
Есть теперь пренебречь влиянием таких границ области фильтрации, как стенки скважин (эти границы имеют сравнительно очень малую протяжность; их влияние будет оценено ниже), то из независимости от времени уравнений равновесия системы жидкость - пористая среда (20) и напряжений на кровле и подошве пласта следует важный вывод о независимости суммарного напряженного состояния в системе жидкость - пористая среда от времени, так что
|
|