Методы и формы научного познания. Контрольная работа
Мы можем использовать наше знание природы, чтобы исключить многие другие факторы. Астролог может войти в лабораторию и спросить: «Вы проверили, как сегодня расположены планеты? Их положение может иметь некоторое влияние на ваш эксперимент». Мы рассматриваем это как несущественный фактор, ибо полагаем, что планеты находятся слишком далеко, чтобы оказать такое влияние.
Наше предположение о несущественности влияния планет является верным, но было бы ошибкой думать, что мы можем автоматически исключить различные факторы просто потому, что, как мы полагаем, они не оказывают никакого влияния на процесс. Не существует никакого способа убедиться в этом, пока не будут проведены экспериментальные испытания. Вообразите, что вы живете до изобретения радио. Кто-то ставит на ваш стол ящик и говорит вам о том, что если кто-либо поет в некотором месте на расстоянии тысячи миль отсюда, то вы услышите, как прибор в этом ящике исполняет точно ту же самую песню, в том же самом тоне и ритме. Поверите ли вы этому? Вероятно, вы ответите: «Невозможно. Не существует никаких электрических проводов, связанных с этим ящиком. Из моего опыта я знаю, что ничто происходящее за тысячу миль отсюда не может иметь какого-либо влияния на происходящее в этой комнате».
Это точно то же самое рассуждение, посредством которого мы пришли к выводу, что положение планет не может влиять на наш эксперимент с водородом! Очевидно, мы должны быть очень осторожными. Иногда существуют воздействия, о которых мы не можем знать, пока они не обнаружены. По этой причине самый первый шаг в нашем эксперименте, определяющий существенные факторы, иногда является трудным. Кроме того, этот шаг часто явно не указывается в отчетах об исследованиях. Ученый описывает только приборы, которые он использует, эксперимент, который осуществляет, и то, что он открывает в отношениях между некоторыми величинами. Он не добавляет к этому: «И кроме того, я обнаружил, что такие-то факторы не оказывают влияния на результат». В большинстве случаев, когда область, в которой происходят исследования, достаточно известна, ученый будет считать само собой разумеющимся, что другие факторы являются несущественными. Он может быть совершенно прав, но в новых областях следует быть крайне осторожным. Конечно, никто не будет считать, что на лабораторный эксперимент может повлиять то обстоятельство, смотрим ли мы на приборы с расстояния в десять дюймов или десять футов, или же находимся ли мы в добром или дурном расположении духа. Эти факторы, вероятно, несущественны, но абсолютно быть уверенными в этом мы не можем. Если кто-то подозревает, что эти факторы существенны, то должен быть проведен эксперимент, исключающий их.
Практические соображения будут удерживать нас, конечно, от испытания каждого фактора, который может быть существенным. Могут быть испытаны тысячи маловероятных возможностей, но просто не будет времени, чтобы исследовать их все. Мы должны руководствоваться здравым смыслом и уточнять свои предположения, только если случится нечто неожиданное, заставляющее нас рассматривать в качестве существенного фактор, который мы прежде игнорировали. Будет ли цвет листьев на деревьях вне лаборатории влиять на длину волны света, который мы используем в эксперименте? Будут ли части прибора функционировать иначе в зависимости от того, находится ли их законный владелец в Нью-Йорке или Чикаго, или же в зависимости от его отношения к эксперименту? Очевидно, что мы не имеем времени, чтобы испытать такие факторы. Мы предполагаем, что духовное состояние владельца оборудования не имеет никакого физического влияния на эксперимент, но члены некоторых племен могут думать иначе. Они могут верить в то, что боги будут помогать эксперименту, если владелец прибора хочет, чтобы эксперимент был осуществлен, и не будут, если собственник этого не хочет. Существующие верования могут, таким образом, влиять на то, что считать существенным. В большинстве случаев ученый, размышляя о проблеме, делает обычные догадки о том, какие факторы заслуживают рассмотрения, и, возможно, даже осуществит несколько предварительных экспериментов, чтобы исключить факторы, в которых он сомневается.
Предположим, что мы решили, что существенными факторами в нашем эксперименте с водородом являются температура, давление и объем. В нашем сосуде состав и общее количество газа остаются теми же самыми, потому что мы держим сосуд закрытым. Мы свободны, таким образом, в проверке отношения между тремя факторами. Если мы поддерживаем постоянную температуру, но увеличиваем давление, тогда мы обнаруживаем, что объем изменяется обратно пропорционально давлению, то есть если мы удвоим давление, то объем уменьшится на половину прежней величины. Если мы утроим давление, то объем уменьшится на одну треть. Этот известный эксперимент был осуществлен в семнадцатом столетии ирландским физиком Робертом Бойлем. Закон, который он открыл, известный как закон Бойля, утверждает, что если температура газа в замкнутом сосуде остается постоянной, то произведение объема на давление есть константа.
Затем мы сохраняем постоянным давление (помещая тот же самый груз на поршень), но изменяем температуру. Тогда мы обнаруживаем, что объем увеличивается, когда газ нагревается, и уменьшается, когда газ охлаждается. Путем измерения объема и температуры мы найдем, что объем пропорционален температуре. (Эту зависимость иногда называют законом Шарля в честь французского ученого Жака Шарля.) Мы должны позаботиться о том, чтобы не использовать при измерении ни шкалу Фаренгейта, ни Цельсия, а взять шкалу, в которой нуль является «абсолютным нулем» или равен —273° шкалы Цельсия. Это — «абсолютная шкала», или «шкала Кельвина», введенная лордом Кельвином, английским физиком девятнадцатого века. Теперь легко приступить к экспериментальной верификации общего закона, охватывающего все три фактора. Такой закон фактически предполагается двумя законами, которые мы уже получили, но общий закон имеет большее эмпирическое содержание, чем два закона, взятые вместе. Этот общий закон утверждает, что если количество газа в замкнутом сосуде остается постоянным, то произведение давления на объем равно произведению температуры на R (P×V=T×R). В этом уравнении R представляет константу, которая меняется в зависимости от количества взятого газа. Таким образом, этот общий закон выражает отношение между всеми тремя величинами и является более эффективным для предсказаний, чем два других объединенных закона. Если мы знаем значения любых двух из трех переменных величин, тогда мы можем легко предсказать третью.
Этот пример простого эксперимента показывает, как можно сохранить некоторые факторы постоянными, чтобы исследовать зависимости, существующие между другими факторами. Он также показывает — и это очень важно — плодотворность количественных понятий. Законы, определяемые с помощью этого эксперимента, предполагают умение измерять различные величины. Если бы это было не так, тогда пришлось бы сформулировать законы качественным образом. Такие законы будут значительно слабее и менее полезны для предсказаний. Без численных значений для давления, объема и температуры самое большее, что можно сказать об одной из величин,— это то, что она остается той же самой, или увеличивается, или уменьшается. Так, мы могли бы сформулировать закон Бойля следующим образом: если температура газа в замкнутом сосуде остается той же самой, а давление увеличивается, тогда объем будет уменьшаться. Когда давление уменьшается, объем увеличивается. Это, конечно, закон. Некоторым образом он даже похож на закон Бойля, но он, однако, значительно слабее его, потому что не дает нам возможности предсказать значение величины. Мы можем предсказать только то, что величина будет возрастать, уменьшаться или останется постоянной .