Минимизация холостых пробегов автотранспортного предприятия
ТАБЛИЦА 3. Расчётные нормативы.
Показатель | Обозначение | Значение |
Грузоподъёмность | q | 5 |
Коэффициент использования грузоподъёмности | g | 0,9 |
Время в наряде * (в часах) | Тн | 12,5 |
Среднетехническая скорость (в км/час) | Vт | 24 |
Простой под погрузкой и выгрузкой на одну ездку с грузом (мин) | t пв | 85 |
* Примечание. Допустимое отклонение ± 35 минут.
** Примечание. Используется автомобиль ЗИЛ-130 грузоподъёмностью 5 тонн.
§3. ТРАНСПОРТНАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.
3.1. Математическая постановка задачи.
Рассмотрим и сформулируем в математической форме условие транспортной задачи. Потребителям Б1, Б2, , Бj, , Бn требуется груз в количествах b1, b2, ., bj, ., bn (т) единиц, который имеется или производится у поставщиков A1, A2, , Ai, , Am в количествах a1, a2, ., ai, , am (т) единиц соответственно. Обозначим через qij объём перевозок из i-ого пункта отправления в j-ый пункт назначения. Объём перевозок известен для всех пунктов ( задана заявка на перевозки грузов, см. таблицу 1.). Расстояние между поставщиками и потребителями известно (см. таблицу 2.) и составляет lij (км). В процессе выполнения перевозок в пунктах назначения Б1, Б2, , Бj, , Бn после разгрузки автомобилей будет образовываться порожняк в количествах b`1, b`2, ., b`j, ., b`n который надо направить в пункты A1, A2, , Ai, , Am в количествах a`1,a`2,…a`j,….a`m.
С методической точки для решения задачи удобней пользоваться понятием “ездка”. Поэтому за единицу измерения будет приниматься ездка автомобиля с грузом и без него.
В задаче будет выполняться условие:
m n
b`j = bj = S qij , где j=1,2, ,n и a`i = ai = S qij , где i=1,2, ,m ,
1 1
Дополнительным условием задачи является требование, чтобы за рабочую смену автомобиль направлялся не более, чем в четыре разных пункта отправления и в такое же количество пунктов назначения. Практически это означает, что при сменном задании с большим числом ездок необходимо составить кольцевой маршрут так, чтобы по нему можно было сделать несколько оборотов. Необходим план перевозок который обеспечит выполнение заданных объёмов с наименьшим холостым пробегом автомобиля.
3.2. Математическая запись задачи.
Обозначим через Xij количество порожняка (в автомобиле - ездках) предназначенного к отправке из пункта разгрузки Бj в пункт погрузки Ai , тогда суммарный холостой пробег автомобиля из всех пунктов с наличием порожняка во все пункты его подачи будет иметь вид:
n m
S S Xij * lij à min. { 1 }
j=1 i=1
Условие полного удовлетворения спроса на порожняк каждого пункта отправления за счёт подачи его из разных пунктов с наличием порожняка выглядит так:
n
S Xij = a`i , где i= 1,2, .,m. { 2 }
j=1
Весь порожняк из каждого пункта назначения должен быть подан в пункт отправления под погрузку, т.е. :
m
S Xij = b`j , где j= 1,2, .,n. { 3 }
i=1
Очевидно, что количество автомобилей не может быть отрицательным числом, т.е. Xij > 0, при i= 1,2, .,m, j= 1,2, .,n. { 4 }
Таким образом, в математической форме транспортная задача формулируется так:
Определить значение переменных Xij минимизирующих линейную форму, выраженную {1}, при ограничениях, указанных в {2},{3},{4}. Необходимо равенство общей потребности получателей и наличия груза у поставщиков или отправителей:
m n
S b`j = S а`j { 5 }
i=1 j=1
Это равенство является необходимым и достаточным условием для совместимости уравнений {2},{3}.
Цель решения выражается уравнением {1}: найти минимальный суммарный холостой пробег автомобилей. Задачу, выраженную формулами {1—5} принято называть задачей минимизации холостых пробегов автомобилей.
3.3. Метод совмещённых планов.
Для решения задачи разработан метод совмещённых планов. С его помощью она решается в три этапа.
На первом этапе решают задачу минимизации холостых пробегов автомобилей, в результате чего находят оптимальный план возврата порожняка под погрузку после разгрузки. Составление оптимального плана отражено в блок-схеме алгоритма метода потенциалов на рисунке 1.
На втором этапе из грузопотока ( линий перевозок ) заданных заявкой на перевозки и линий оптимального плана возврата порожняка, найденного на первом этапе, составляют схему кольцевых и маятниковых маршрутов движения автомобилей, в совокупности обеспечивающих минимум холостых пробегов автомобилей при выполнении заданных перевозок.
На третьем этапе найденные маршруты прикрепляют к АТП (автотранспортному предприятию), после чего разрабатывают сменно-суточные задания водителям по каждому маршруту.
Составление матрицы условий
Составление допустимого исходного плана
Подсчёт числа занятых клеток в матрице (N) и сравнение с (m+n-1)
N>m+n-1 N<m+n-1
Ликвидация лишних занятых клеток | N=m+n-1 | Создание недостающих занятых клеток |
Расчёт индексов
Проверка незанятых клеток на потенциальность