Морфологический анализ цветных (спектрозональных) изображений
Рефераты >> Математика >> Морфологический анализ цветных (спектрозональных) изображений

Ограничимся случаем, когда упомянутые геометрические искажения можно моделировать группой преобразований R2->R2, преобразование изображения назовем сдвигом g(×) на h. Здесь

Q(h): Rn->Rn, hÎH, - группа операторов. Векторный сдвиг на h¢ÎH даст

.

В задаче выделения и совмещения фрагмента рассмотрим фрагмент сдвинутого на h изображения g(×) в “окне” A:

(100)

причем, поскольку где то в (100) - ограничение на сдвиг “окна” А, которое должно оставаться в пределах поля зрения X.

Если кроме цвета g(×) может отличаться от f(×), скажем, произвольным преобразованием распределения яркости при неизменном распределении цвета и - форма фрагмента f(×), то задача выделения и совмещения фрагмента сводится к следующей задаче на минимум

.(101)

При этом считается, что фрагмент изображения g(×), соответствующий фрагменту cA(×)f(×), будет помещен в “окно”.А путем соответствующего сдвига h=h*, совпадает с cA(×)f(×) с точностью до некоторого преобразования распределения яркости на нем. Это означает, что

.

т.е. в (101) при h=h* достигается минимум.

4). В ряде случаев возникает следующая задача анализа спектрозональных изображений: выделить объекты которые “видны”, скажем, в первом канале и “не видны” в остальных.

Рассмотрим два изображения и . Определим форму в широком смысле как множество всех линейных преобразований : (A - линейный оператор R2->R2, не зависящий от xÎX). Для определения проектора на рассмотрим задачу на минимум

. [*]

Пусть , , тогда задача на минимум [*] эквивалентна следующей: tr A*AS - 2trAB ~ . Ее решение (знаком - обозначено псевдообращение).

=

=

Рис.1.

fe - вектор выходных сигналов детекторов, отвечающий излучению e(×), je - его цвет; j1,j2,j3, - векторы (цвета) базовых излучений, b - белый цвет, конец вектора b находится на пересечении биссектрис.

Литература.

[1] Пытьев Ю.П. Морфологические понятия в задачах анализа изображений, - Докл. АН СССР, 1975, т. 224, №6, сс. 1283-1286.

[2] Пытьев Ю.П. Морфологический анализ изображений, - Докл. АН СССР, 1983, т. 296, №5, сс. 1061-1064.

[3] Пытьев Ю.П. Задачи морфологического анализа изображений, - Математические методы исследования природных ресурсов земли из космоса, ред. Золотухин В.Г., Наука, Москва, 1984, сс. хххх-ххххх.

[4] Пытьев Ю.П., Чуличков А.И. ЭВМ анализирует форму изображения, - Знание,сер. Математика, Кибернентика, Москва, 1988, 47 стр.

[5] Yu.P.Pyt’ev. Morphological Image Analysis, Patt. Recogn. and Image Analysis, 1993, v.3, #1, pp.19-28.

[6] Антонюк В.А., Пытьев Ю.П. Спецпроцессоры реального времени для морфологического анализа реальных сцен. Обработка изображений и дистанционное исследования, -Новосибирск, 1981, сс. 87-89.

[7] Антонюк В.А., Пытьев Ю.П., Рау Э.И. Автоматизация визуального контроля изделий микроэлектроники,Радиотехника и электроника, 1985, т. ХХХ,№12, сс. 2456-2458.

[8] Ермолаев А.Г., Пытьев Ю.П. Априорные оценки полезного сигнала для морфологических решающих алглритмов, - Автоматизация, 1984, №5, сс. 118-120.

[9] Пытьев Ю.П, Задорожный С.С., Лукьянов А.Е. Об автоматизации сравнительного морфологического анализа электронномикроскопических изображений, - Изв. АН СССР, сер. физическая, 1977, т. 41, №11, сс. хххх-хххх.

[10] A.A. Stepanov, S.Yu. Zheltov, Yu.V. Visilter. Shape analysis using Pyt'ev morphological paradigm and its using in machine vision. Proc. SPIE - Th. Intern. Soc. For Optical Engineering Videometrics III, 1994, v. 2350, pp. 163-167.

[11] Пытьев Ю.П Математические методы интерпретации эксперимента, Высшая школа, 351 стр., 1989.

[12] Майзель С.О. Ратхер Е.С. Цветовые расчеты и измерения. М:Л:Госэнергоиздат 1941, (Труды всесоюзного электротехнического института, вып.56).

[13] P. Kronberg. Fernerkundung der Erde Ferdinand Enke. Verlag Stuthgart 1985.

[1] Например, в связи с изменением времени суток, погоды, времени года и т.п.

[2] Фрагмент морфологического анализа цветных изображений содержится в работе[3].

[3] вектор fe будет иметь отрицательные координаты, если он не принадлежит выпуклому конусу

[4]черта символизирует замыкание, - выпуклый замкнутый конус в Rn.

[5] Если - более детальное изображение , то некоторые A(j) могут “ращепиться” на несколько подмножеств A¢(j¢), на каждом из которых цвет постоянный, но различный на разных подмножествах A¢(j¢). Однако, поскольку форма обычно строится исходя из данного изображения f(×), v(f(×)) не может содержать изображения, которые более детально характеризуют изображенную сцену.

[6] Для простоты яркость изображения считается положительной в каждой точке поля зрения Х.

[7]- класс неотрицательных функций принадлежащих .


Страница: