Морфологический анализ цветных (спектрозональных) изображенийРефераты >> Математика >> Морфологический анализ цветных (спектрозональных) изображений
Формой в широком смысле изображения, имеющего заданный набор цветов j1, ., jq на некоторых множествах положительной меры A1, .,Aq разбиение поля зрения можно назвать оператор (34), формой такого изображения является оператор F+ (37). Всякое такое изображение g(×), удовлетворяющее условиям физичности (неотрицательности яркостей), удовлетворяет уравнению F+g(×)=g(×), те из них, у которых m(Ai)>0, i=1, .,q, изоморфны, остальные имеют более простую форму. n
В заключение этого раздела вернемся к понятию формы изображения, заданного с точностью до произвольного, удовлетворяющего условиям физичности, преобразования яркости. Речь идет о форме изображения , заданного распределением цвета , при произвольном (физичном) распределении яркости, например, . Для определения формы рассмотрим задачу наилучшего в приближения изображения такими изображениями
, (41)
Теорема 5. Решение задачи (41) дается равенством
, (42)
в котором , где . Невязка приближения
, (43)
( !) n
Определение. Формой изображения, заданного распределением цвета , назовем выпуклый, замкнутый конус изображений
или - проектор на .
Всякое изображение g(×), распределение цвета которого есть j(×) и только такое изображение содержится в и является неподвижной точкой оператора
: g(×) = g(×). (#)
Поскольку на самом деле детали сцены, передаваемые распределением цвета j(×), не представлены на изображении f(×) = f(×)j(×) в той области поля зрения, в которой яркость f(x)=0, xÎX, будем считать, что - форма любого изображения f(x) = f(x)j(x), f(x)>0, xÎX(modm), все такие изображения изоморфны, а форма всякого изображения g(×), удовлетворяющего уравнению (#), не сложнее, чем форма f(×).
Замечание 5. Пусть j1, ., jN - исходный набор цветов, , A1, .,AN - соответствующее оптимальное разбиение X, найденное в теореие 4 и
, (34*)
- наилучшее приближение f(×). Тогда в равенстве (24)
, (24*)
если A1, .,AN - исходное разбиение X в теореме 3. Наоборот, если A1, .,AN - заданное в теореме 3 разбиение X и f1, .,fN - собственные векторы операторов Ф1, .,ФN (23) соответственно, отвечающие максимальным собственным значениям, то f1, .,fN и будет выполнено равенство (24), если в (34*) определить ji как цвет fi в (24), i=1, .,N.
Проверка этого замечания не представляет затруднений.
В. Случай, когда допускаются небольшие изменения цвета в пределах каждого Ai, i=1, .,N.
Разумеется, условие постоянства цвета на множествах Ai, i=1, .,N, на практике может выполняться лишь с определенной точностью. Последнюю можно повысить как путем перехода к более мелкому разбиению , так и допустив некоторые изменения цвета в пределах каждого Ai, i=1, .,N, например, выбрав вместо (17) класс изображений
(17*)
в котором в (3).
Поскольку в задаче наилучшего приближения f(×) изображениями этого класса предстоит найти , векторы при любом i=1, .,N, можно считать ортогональными, определив
, (*)
из условия минимума невязки по . После этого для каждого i=1, .,N векторы должны быть определены из условия
(**)
при дополнительном условии ортогональности
. Решение этой задачи дается в следующей лемме
Лемма 5. Пусть ортогональные собственные векторы оператора Фi (23), упорядоченные по убыванию собственных значений:
.
Тогда решение задачи (**) дается равенствами .
Доказательство. Заметим, что, поскольку Фi - самосопряженный неотрицательно определенный оператор, его собственные значения неотрицательны, а его собственные векторы всегда можно выбрать так, чтобы они образовали ортогональный базис в Rn. Пусть Pi - ортогонально проецирует в Rn на линейную оболочку собственных векторов и
[Pi Фi Pi] - сужение оператора Pi Фi Pi на . Тогда левая часть (*) равна следу оператора [Pi Фi Pi]
, где - j-ое собственное значение оператора (см., например, [10]). Пусть . Тогда согласно теореме Пуанкаре, [10], , откуда следует утверждаемое в лемме. ■