Морфологический анализ цветных (спектрозональных) изображений
Рефераты >> Математика >> Морфологический анализ цветных (спектрозональных) изображений

Воспользовавшись выражениями (*) и леммой 5, найдем, что в рассматриваемом случае имеет место утверждение, аналогичное теореме 3.

Теорема 3*. Наилучшее приближение любого изображения f(×) изображениями (17*) имеет вид

,

Где : ортогональный проектор на линейную оболочку , собственных векторов задачи

.

Невязка наилучшего приближения равна

. n

Рассмотрим теперь задачу наилучшего приближения изображения f(×) изображениями (17), в которых заданы и фиксированы векторы , и надлежит определить измеримое разбиение и функции , как решение задачи

(30)

При любом разбиении минимум в (30) по достигается при , определяемых равенством (20). В свою очередь, очевидно, что

(31)

где точки , в которых выполняется равенство могут быть произвольно включены в одно из множеств : либо в , либо в . Это соглашение отмечено звездочкой в (31).

Таким образом доказана

Теорема 6. Пусть заданные векторы Rn. Решением задачи (30) является изображение

,

где ортогональный проектор определен равенством (25), а - индикаторная функция множества (31), i=1, .,N. Невязка наилучшего приближения равна

. n

Замечание 5. Так как при

,

то условия (31), определяющие разбиение , можно записать в виде

, (32)

показывающем, что множество в (32) инвариантно относительно любого преобразования изображения , не изменяющего его цвет.

Теоремы 3 и 6 позволяют сформулировать необходимые и достаточные условия наилучшего приближения изображения f(×) изображениями (17), при котором должны быть найдены и ci0 , i=1, .,N, такие, что

.

Теорема 7. Для заданного изображения f(×) определим множества равенствами (32), оператор П - равенством (24), - равенствами (25). Тогда ,

определено равенством (32), в котором - собственный вектор оператора Фi (23), отвечающий наибольшему собственному значению, причем в (23) , наконец, будет дано равенством (20), в котором , где - собственный вектор оператора , отвечающий наибольшему собственному значению ; наконец,

. n

Замечание 6. Следующая итерационная процедура полезна при отыскании : Для изображения f(×) зададим и по теореме 5 найдем и , затем по теореме 3, используя найдем и . После этого вновь воспользуемся теоремой 3 и по найдем и и т.д. Построенная таким образом последовательность изображений очевидно обладает тем свойством, что числовая последовательность , k=1,2,.… монотонно не возрастает и, следовательно, сходится. К сожалению ничего определенного нельзя сказать о сходимости последовательности .

Формы (10) и (9) удобно задавать операторами Пf и П*f соответственно.

Теорема 7. Форма в широком смысле изображения определяется ортогональным проектором П*f :

,

при этом и .

Доказательство. Так как для , то получаем первое утверждение. Для доказательства второго утверждения рассмотрим выпуклую задачу на минимум , решение которой определяется условиями (см., например, [11]) . Отсюда следует, что и тем самым доказано и второе утверждение n


Страница: