Минимизация ФАЛРефераты >> Математика >> Минимизация ФАЛ
Минимизация логических функций, заданных в базисе .
Метод неопределенных коэфициентов применим для минимизации функций, заданных в различных базисах. Пусть функция является ПСНФ, операция имеет особенности, отличающие ее от операции дизъюнкции.
1)
2)
3)
Минимизация при этом усложняется, так как ее основными критериями являются минимальные ранги каждого терма и их минимальное количество, при этом в ходе минимизации в базисе нецелесообразно приравнивать к нулю все коэффициенты на наборах где , т.к. в наборах, где функция могут остаться термы высокого ранга. Поэтому особой разницы между выбором нулевого или единичного значения функции нет.
Количество коэффициентов, остающихся в нулевых строках должно быть четным, а в единичных – нечетным. Лучше всего рассматривать единичные строки и оставлять те коэффициенты минимального ранга, которые чаще всего повторяются в этих строках. В общем случае для получения минимальной формы выполняют следующие действия:
1) Подсчитывают, сколько раз в единичных строках встречаются термы первого ранга и оставляют из них те, которые встречаются максимальное число раз.
2) Находят нулевые строки, в которых встречаются оставленные в первом шаге термы и их не обнуляют.
3) Рассматривая нулевую строку, в которой остался одни единичные термы и находят в ней еще единичный терм, встречающийся максимальное число раз в единичных строках, в которых еще не было оставлено ни одного терма и.т.д.
Метод Квайна-Мак-Класки может быть применим при минимизации этого базиса, при этом кроме эффективных значений функции, где включаются некоторые min-термы, где . Метод Квайна-Мак-Класки применим для минимизации базисов стрелки пирса и штриха Шеффера.
Не полностью определенные ФАЛ (1.6)
Определение: не полностью определенные ФАЛ от n переменных называется функции, заданные на множестве наборов меньше чем .
Если количество неопределенных наборов равно m то путем различных доопределений можно получить различных функций.
Пример: доопределить функцию
Где символ * означает "может быть".
Доопределим *=0
1)
Доопределим *=1
2)
Если доопределять *=0 или *=1 то получим минимальный вариант:
3)
Пример показывает, что доопределение функции существенно влияет на конечный результат минимизации. При доопределении можно руководствоваться правилом: МДНФ не полностью определенных функций получается как дизъюнкция наиболее коротких по числу букв импликант функции на всех наборах и функциях, которые в совокупности покрывают все импликативные СНФ, и на всех наборах, где функция не определена.
Пример: найти минимальную форму для
Составим таблицу истинности:
|
|
|
|
|
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | * |
0 | 0 | 1 | 0 | * |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | * |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 1 | * |
1 | 0 | 0 | 0 | * |
1 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 0 |
1 | 0 | 1 | 1 | * |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 0 | 1 | * |
1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | * |