Минимизация ФАЛ
Рефераты >> Математика >> Минимизация ФАЛ

2-Группа: 0-11, -011, 01-1, 011-, 10-1

3-Группа: -111, 1-11

Еще раз сравним (при этом прочерки должны быть на одинаковых позициях):

0-Группа: 00--, 0-0-, -00-

1-Группа: 0--1, -0-1, 0-1-, 01—

2-Группа: --11

И еще раз сравним:

0-Группа: 0---

Запишем таблицу исходных min-термов, где функция равна 1:

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1011

1111

 

V

V

V

V

V

V

V

V

0---

Выделим минимальное число групп, покрывающих

Для проверки составим таблицу истинности

1000

1001

1011

1111

-00-

V

V

-0-1

V

V

-111

V

V

Метод минимизирующих карт (для ДСНФ и КСНФ). (1.5)

Одним из способов графического представления булевых функций от небольшого числа переменных являются карты Карно. Их разновидность – карты Вейча, которые строятся как развертки кубов на плоскости, при этом вершины куба представляются клетками карты, координаты которых совпадают с координатами соответствующих вершин куба.

Для ДСНФ единицы ставятся в клетке, соответствующей номеру набора, на котором значение функции равно единице, а ноль не ставится, а для КСНФ – наоборот.

Диаграмма для двух логических переменных (для ДСНФ):

Для трех переменных:

Карты Карно используются для ручной минимизации функций алгебры логики при небольшом количестве переменных. Правило минимизации: склеиванию подвергаются 2,4,8,16, клеток и клетки, лежащие на границе карты.

При числе переменных 5 и больше отобразить графически функцию в виде единой плоской карты невозможно. Тогда строят комбинированные карты, состоящие из совокупности более простых карт. Процедура минимизации заключается тогда в том, что сначала находится минимальная форма 4-х мерных кубов (карт), а затем, расширяя понятие соседних клеток, отыскивают min-термы для совокупности карт. Причем соседними клетками являются клетки, совпадающие при совмещении карт поворотом вокруг общего ребра.

Пример: Минимизировать ФАЛ от двух переменных:

1

1

1

Минимизировать функцию:

1

1

1

1


Страница: