Линейное и динамическое программированиеРефераты >> Математика >> Линейное и динамическое программирование
х – вероятность выбора первой строки
(1-х) – вероятность выбора второй строки
0 £ x £ 1
Пусть П играет в смешанных стратегиях, а В отвечает чистыми:
n1(х)= 2х-2(1-х) (1)
n2(х)= -2х+(1-х) (2)
n4(х)= -5х+3(1-х) (4)
n1(х)= 3х-2
n2(х)= -3х+1
n4(х)= -8х+3
т. В(х*, n*)
т. В: n1=n4
3х-2= -8х+3
11х=5
х*=5/11
n(х*)=×15/11-2= -7/11
р*(5/11; 1-5/11)=р*(5/11; 6/11) – оптимальная смешанная стратегия для П
Ищем оптимальную смешанную стратегию для В.
q(y, 0, 0, 1-y)
p1* = 5/11>0
Рассматриваем вариант, когда В играет в смешанных стратегиях, а П – в чистых стратегиях выбирает первую строку.
-7/11= 2y-5(1-y)
y*= 48/77
q*=(48/77, 0, 0, 29/77) – оптимальная смешанная стратегия В
Анализ модели краткосрочного страхования жизни
В страховой компании застраховано N1=900 человек в возрасте 45 лет и N2=550 человек в возрасте 55 лет сроком на один год. Компания выплачивает наследникам: 100000 руб., в случае смерти застрахованного от несчастного случая, и 25000 руб., в случае смерти от естественных причин в течение года. Компания не платит ничего, если человек проживет этот год. Предположим, что смертность описывается моделью Мейкхама и рассчитаем нетто-премию, цену полиса, страховую надбавку, чтобы вероятность неразорения компании составляла 0,95.
Индивидуальные иски x и x каждого из застрахованных 1-ой и 2-ой групп определяются, соответственно, рядами распределения (для удобства за денежную единицу примем 100000 руб.).
0 ¼ 1 (1)
x
=0,9982 =0,0013 =0,0005
0 ¼ 1
x
=0,9962 =0,0044 =0,0005
Здесь вероятности смерти от несчастного случая примем равными 0,0005, а вероятности смерти от естественных причин возьмем из Таблицы продолжительности жизни.
Средние индивидуальные иски Мx и Мx равны соответствующим нетто-премиям Р и Р для клиентов компании 1-ой и 2-ой групп.
Р = Мx = ј*0,0013 + 1*0,0005 » 0,00083 = 83 руб. (2)
Р = Мx = ј*0,0044 + 1*0,0005 » 0,0016 = 160 руб.
I. Сначала рассмотрим решение, основанное на распределении Пуассона.
Чтобы свести задачу к схеме опытов Бернулли можно приближенно заменить ряды распределения (1) следующими таблицами:
0 М(x/x№0) 0 М(x/x№0)
x: x: (3)
а затем в качестве условной денежной единицы принять условные математические ожидания М(x/x№0) в 1-ой таблице и М(x/x№0) – во 2-ой.
Вычислим условные математические ожидания:
М(x/x№0)=ј*Р(x=ј/x№0)+1*Р(x=1/x№0) = =ј*/()+1*= =ј*0,0044/(0,0044+0,0005)+1*0,0005/(0,0044+0,0005)=
=ј*13/18+1*5/49 = 5/18 » 0,458=45800 руб. – денежная единица для клиентов 1-ой группы.
М(x/x№0=ј*/()+1*=
=ј*0,0044/(0,0044+0,0005)+1*0,0005/(0,0044+0,0005)=
=. ј*44/49+1*5/49 = 16/49 » 0,327=32700 руб – денежная единица для клиентов 2-ой группы.
С учетом всех замечаний вместо рядов распределения (3) имеем: