Линейное и динамическое программирование
Рефераты >> Математика >> Линейное и динамическое программирование

Задача линейного оптимального планирования - один из важнейших математических инструментов, используемых в экономике. Рассмотрим предприятие, которое из m видов ресурсов производит n видов продукции.

Примем следующие обозначения:

i - номер группы ресурса (i=1,2, ., m);

j -номер вида продукции (j=1,2, ., n);

aij - количество единиц i-го ресурса, расходуемое на производство одной единицы j-го вида продукции;

bij - запасы i-ro ресурса ;

xi — планируемое количество единиц j-й продукции;

cj -прибыли от реализации одной единицы j-го вида продукции;

X=(x1, x2,…, xn) - искомый план производства, называется допустимым если имеющихся ресурсов достаточно. называется допустимым если имеющихся ресурсов достаточно.

Рассматриваемая задача состоит в нахождении допустимого плана, дающего максимальную прибыль из всех допустимых решения подобных задач, называемых задачами линейного программирования.

Предположим, что предприятие может выпускать четыре вид продукции, используя для этого три вида ресурсов. Известна технологически матрица А затрат любого ресурса на единицу каждой продукции, вектор В объемов ресурсов и вектор С удельной прибыли

48 30 29 10 удельные прибыли

нормы расхода 3 2 4 3 198

2 3 1 2 96

6 5 1 0 228

запасы ресурсов

Обозначим х1, х2, х3, х4 - число единиц 1-й, 2-й, 3-й, 4-й продукции, которые планируем произвести. При этом можно использовать только имеющиеся запасы ресурсов. Целью является получение максимальной прибыли. Получаем следующую математическую модель оптимального планирования:

L(x1,x2,x3,x4)=48xl+30x2+29x3+10x4 àmax

3х1+2х2+4х3+3х4≤198

2х1+3х2+1х3+2х4≤96

6х1+5х2+1х3+0х4≤228

xj≥0, jєN4

Для решения полученной задачи в каждое неравенство добавим неотрицательную переменную. После этого неравенства превратятся в равенства, в силу этого добавляемые переменные называются базисными. Получается задача ЛП на максимум, все переменные неотрицательны, все ограничения есть равенства и есть базисный набор переменных: х5 - в 1-м равенстве, х6 - во 2-м и х7 - в 3-м. Теперь можно запускать симплекс-метод.

L(x1,x2,x3,x4)=48xl+30x2+29x3+10x4 àmax

3х1+2х2+4х3+3х4+x5 =198

2х1+3х2+х3+2х4 +x6 =96

6х1+5х2+х3 +x7=228

xj≥0, jєN7

Таблица N 1

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

0

x5

198

3

2

4

3

1

0

0

0

x6

96

2

3

1

2

0

1

0

0

x7

228

6

5

1

0

0

0

1

   

0

-48

-30

-29

-10

0

0

0

Если все оценочные коэффициенты (серый цвет) неотрицательны, то получено оптимальное решение: базисные переменные равны свободным членам, остальные равны 0. Если же есть отрицательный оценочный коэффициент, то находят самый малый из них. Если в столбце коэффициентов над ним нет положительных, то задача не имеет решения. Задача оптимального планирования не может быть таковой, поэтому ищут минимальное отношение свободных членов столбца Н к положительным коэффициентам указанного xj. В пересечении строки и столбца получаем разрешающий элемент и затем строим новую таблицу.

Таблица N 2

C

B

H

48

30

29

10

0

0

0

x1

x2

x3

x4

x5

x6

x7

0

х5

84

0

31/2

3

1

0

-3/6

0

x6

20

0

11/3

2/3

2

0

1

-2/6

48

х1

38

1

5/6

1/6

0

0

0

1/6

   

1824

0

10

-21

-10

0

0

-8


Страница: