Аппроксимация непрерывных функций многочленами
Рефераты >> Математика >> Аппроксимация непрерывных функций многочленами

Значение этой теоремы состоит в том, что она даёт возможность получить для погрешности наилучшего приближения некоторую оценку снизу.

Теорема существования.

Среди функций Q(x) существует по крайней мере одна, для которой HQ имеет наименьшее значение.

Т.о., пусть Н- есть нижняя грань множества всех HQ. По определению, следовательно, существует бесконечная последовательность функций Qi(x), для которой .

2.2. Теорема Чебышева.

Функция Р(х), которая из всех функций вида Q(x) наименее уклоняется в [a,b] от функции f(x), единственна.

Эта функция вполне характеризуется таким своим свойством, если она приведена к виду , и , и дробь несократима, то число N последовательных точек интервала [a,b], в котором разность f(x)-P(x) принимает с чередующимися знаками значение Нр, не менее, чем m+n-d+2, где d=, а если P(x)=0, то .

Теорема Чебышева показывает, что существует единственная функция P(x), дающая наилучшее приближение к данной функции f(x) (т.е. наименее отклоняется от f(x)) в данном нормированном пространстве.

Случай аппроксимации многочленами.

Особенно важным является частный случай, когда S(x)=1, m=0 и интервал [a,b] конечен. В этом случае мы получаем теорему:

многочлен n-й степени P(x), который наименее уклоняется (в метрике пространства С) от заданной непрерывной функции f(x), единственен и вполне характеризуется тем, что число последовательных точек интервала [a,b], в которых разность f(x)-P(x) принимает с чередующимися знаками значение не меньше, чем n+2.

2.3 Переход к периодическим функциям.

Допустим, что - есть непрерывная периодическая функция с периодом , которую нужно наилучшим образом аппроксимировать на всей оси при помощи тригонометрической суммы: порядка n. Сделаем замену переменной так, что интервалу будет соответствовать интервал .

Т.к. и так как есть многочлены степени к от , то после преобразования мы получим . Следовательно, наша задача сводится к наилучшему (в интервале ) приближению функции F(x)=f() при помощи выражения вида: . Выражение W2n(x) можно рассматривать как частный случай выражения Q(x), если положить m=0, . Легко видеть, что общие теоремы применимы, и теорема Чебышева гласит:

тригонометрическая сумма n-го порядка , которая наименее уклоняется на всей оси от заданной непрерывной периодической функции, единственна и вполне характеризуется тем, что число последовательных точек интервала (или какого- нибудь открытого полуинтервала длиной 2), в которых разность принимает с чередующимися знаками значение max|| не меньше, чем 2n+2.

Одну и ту же функцию f(x) в (0,) можно разложить в ряд по sin, по cos, по sin и cos, т.к. если f(x) определена на (0,), то доопределить f(x) на можно бесконечным множеством способов. Следовательно, задача о разложении f(x) в ряд имеет бесчисленное множество решений. Из всех этих решений выделяются 2:

Если f(x) доопределить чётным образом, то получим ряд только по cos кратных дуг;

Если f(x) доопределить нечётным образом, то получим ряд только по sin.

Пример: f(x)=x на

,

;

;

Для sin аналогично, только f(x)- нечётная.

2.4 Обобщение теоремы Чебышева.

Мы рассмотрели алгебраические и тригонометрические многочлены на некотором интервале и сформулировали для них теорему Чебышева об аппроксимации этих функций. Теперь рассмотрим произвольную, непрерывную на [a,b] вещественную функцию.

Рассмотрим систему вещественных непрерывных функций f1(x),f2(x) .fn(x) в конечном или бесконечном интервале [a,b], которая удовлетворяет условиям Хаара: единственность полинома наименьшего уклонения для каждой функции f(P) будет тогда и только тогда, когда каждый полином F(P,x)0 имеет в ограниченном замкнутом точечном множестве не более n-1 различных нулей.

Такую систему называют системой Чебышева относительно интервала [a,b].


Страница: