Аппроксимация непрерывных функций многочленами
Рефераты >> Математика >> Аппроксимация непрерывных функций многочленами

В самом деле, допуская, что пространство Е строго нормировано, предположим, что элемент х имеет два выражения: и наилучшего приближения, причём g1,g2 .gn линейно независимы.

где, как легко видеть, можно принять, что и, поскольку

, то

, и, значит,

Следовательно, в силу строгой нормированности пространства: .

В этом соотношении должно =1, т.к. в противном случае элемент х был бы линейной комбинацией элементов g1,g2 .gn и, значит, было бы . Но если , то

и, значит, , т.к. элементы g1,g2 .gn линейно независимы. Таким образом, рассматриваемые выражения- тождественны.

Примером строго нормированного пространства является пространство Н, а также Lp при р>1, но пространства С и L не являются строго нормированными.

Действительно, возьмём интервал [-1,1] и две линейно независимые функции x(t) и y(t) , модули которых принимают свои максимальные значения в одной и той же точке интервала, причём arg x()=arg y().

Тогда очевидно, . Чтобы доказать, что не есть строго нормированное пространство, достаточно взять x(t)=1, при и x(t)=0, при t<0 ,а y(t)=1-x(t).

Геометрическая интерпретация.

Проблема, существование решения которой мы ранее доказали, допускает полезную геометрическую интерпретацию. Действительно, совокупность точек вида , где зафиксированные элементы g1,g2 .gn линейно независимы, а пробегают всевозможные комплексные числа, представляют некоторое линейное многообразие в том смысле, что из следует, что при произвольных комплексных . Это линейное многообразие, очевидно, является пространством, так как оно содержит точку 0. При n=1 мы получаем “прямую”; при n=2- “плоскость”, а вообще- “n- мерную плоскость”.

Наша проблема, таким образом, состояла в нахождении точки конечномерного подпространства G пространства E, которая от заданной точки х находится на кратчайшем расстоянии (в метрике пространства Е). Мы доказали, что такая точка в G существует.

Если само пространство Е не является конечномерным, т.е. если в нём имеется сколько угодно линейно независимых между собой векторов, то Е содержит бесконечномерные подпространства. Пусть G- такое подпространство.

Возникает вопрос, существует ли в G точка, наименее удалённая от заданной точки . Заметим, если пространство Е строго нормировано, то в G во всяком случае не может существовать более одной точки, наименее удалённой от данной точки .

1.2. Теоремы аппроксимации в пространстве Н.

Пусть G- некоторое подпространство пространства Гильберта Н, и пусть точка x- точка, не принадлежит G. Если в G существует точка y, наименее удалённая от x, то вектор x-y ортогонален к каждому вектору g из G, т.е. (x-y, g)=0, . Чтобы доказать это утверждение, предположим, что в G существует вектор f, для которого , и рассмотрим вектор .

Имеем и, значит: , а это противоречит предположению, что y- есть наименее удалённая точка от x подпространства G. Вектор y из G, обладающий тем свойством, что разность x-y ортогональна к G, естественно назвать проекцией x на G.

В этом случае, когда подпространство конечномерно и образовано линейно независимыми векторами g1,g2 .gn, мы можем, пользуясь доказанными предложениями, фактически найти вектор y=, наименее уклоняющийся от вектора x. Действительно, вектор y- есть проекция x на G и, значит, он должен удовлетворять уравнениям:

(k=1,2 .n) (1), которые в подробной записи имеют вид:

(2)

и представляют систему линейных уравнений, для нахождения коэффициентов .

Детерминант этой системы, т.е.

,

носит название детерминанта Грама системы векторов g1,g2 .gn.

Так как пространство Н строго нормировано, а векторы gi линейно независимы, то при любом векторе x система (2) имеет одно и только одно решение. Отсюда вытекает, что детерминант Грама линейно независимых векторов всегда отличен от нуля.

Найдём ещё выражение для квадрата погрешности, с которой вектор y аппроксимирует вектор x, т.е. для величины .


Страница: