Организация ремонта переднего моста ГАЗ-53А
Рис.2.1.
Тип стационарный
Привод домкратов ручной
Грузоподъемность, кг:
среднего 14000
крайних 4000
бокового 4000
Ход домкратов, мм:
среднего 330
крайних 300
бокового 300
Усилие на рукоятку домкратов, кг:
среднего 30
крайних 25
бокового 25
Габаритные размеры, мм 3618х1670х1690
Вес, кг 1512
Данная конструкция представляет собой стенд для холодной правки балки переднего моста автомобиля ГАЗ-51. Основанием стенда является сварная станина 7 (рис.2.1.) на каждой расположены крайние домкраты 2, боковой домкрат 9, средний домкрат 8. Ремонтируемую балку 4 устанавливают на опоры 3. Прогиб балки определяется угломером 5. Средний и боковой домкраты стационарные, крайние – передвижные, перемещаются по направляющим 1 и 6. Прогиб оси в горизонтальной плоскости устраняется боковым домкратом 9. Для правки оси в вертикальной плоскости служит средний домкрат 8. Для устранения скученности балки служат крайние подвижные домкраты 2.
Как уже говорилось выше существенными недостатками данной конструкции является низкая производительность, из-за ручного привода, а также однонаправленность стенда, т.е. он рассчитан на работу только с автомобилем ГАЗ-51, автомобилем устаревшей конструкции.
Усовершенствовать данную конструкцию можно, установив на данном стенде гидро- или пневмопривод . Это существенно уменьшит время работы, человеческие затраты, а следовательно повысит производительность труда при незначительных капиталовложениях.
2.1.2. Предлагаемая конструкция стенда
Предлагаемая конструкция стенда выполнена на базе стенда для холодной правки балки переднего моста автомобиля ГАЗ-51, модель 9001. Особенностью конструкции стенда является установка гидропривода.
Рис.2.2.
При этом ручные домкраты заменяются гидроцилиндрами, рабочее давление в системе, равное 100кг/см2, обеспечивается насосом, который получает вращение от электродвигателя. Подача масла на гидроцилиндры регулируется распределителем, соединенным с цилиндрами резиновым трубопроводом высокого давления.
Процесс правки аналогичен процессу правки на базовой модели, однако при этом эффективность стенда резко возрастает и снижается время правки балки.
Существенным достоинством данного стенда является возможность работы с балками передних мостов различных марок грузовых автомобилей.
2.2. Инженерные расчеты предлагаемой конструкции
2.2.1. Выбор масляного насоса
Производительность насоса равна по /15/:
; (2.1)
где: Q – производительность насоса, л/мин;
d – диаметр поршня цилиндра, см;
ln – ход поршня рабочего цилиндра, определяется при кинематическом расчете проектируемого оборудования, см;
t – время рабочего хода исполнительного органа технологического оборудования, с, принимаем t=5с;
hn – объемный КПД гидросистемы оборудования, hn=0,8;
n – число одновременно работающих цилиндров, n=4.
Суммарная площадь поршней гидроцилиндров в зависимости от усилия по /15/:
; (2.3)
где: Fп - суммарная площадь поршней цилиндров в рабочем положении, см2;
Р – усилие, прилогаемое к рабочему органу технологического оборудования, Р=24000Н;
r - рабочее давление в гидросистеме, Па, r=100кг/см2=100×105Па;
hмех – механический КПД цилиндра, принимаем hмех=0,95.
т.к.
см
Принимаем по ГОСТ 8755-88 d = 55 мм
Тогда по ГОСТ 8755-88 принимаем гидроцилиндр марки ЦС-55.
Производительность насоса равна по /15/:
л/мин.
Принимаем насос шестеренчатый по ГОСТ 8753-88: НШ-40В
Частота вращения вала насоса:
, (2.3)
где q – теоретическая производительность насоса за 1 оборот приводного вала, см3/об., q = 32,57 см3/об.;
h0 – объемный кпд насоса, h0 = 0,9.
Тогда об/мин
При установке насоса высота столба рабочей жидкости под всасывающей трубкой должна быть не менее 150 мм.
2.2.2. Расчет привода масляного насоса
Требуемая мощность электродвигателя привода масляного насоса определяется по формуле:
; (2.4)
где N – мощность электродвигателя, кВт;
Р1 – давление настройки предохранительного клапана, МПа;
Q – производительность насоса, л/мин;
hn – полный кпд насоса, hn = 0,85.
Р1= (0,10…0,50) р.
Р1= 0,13 × 100×105 = 1,3 МПа
Тогда кВт
По данной мощности принимаем электродвигатель по ГОСТ 19523-81 4А80АЧУЗ
Его мощность: N = 1,1 кВт
число оборотов: n = 1500 об/мин.
отклонение
2.2.3. Расчет конструкции масляного бака
Наиболее целесообразно изготавливать баки плоской и кубической формы.
Расчетная поверхность охлаждения равна:
; (2.5)
где р – давление масла в системе, кг/см2, р = 100 кг/см2;
Q – производительность насоса, л/мин, Q = 42,8 л/мин;
КС – коэффициент использования рабочего времени, КС = 0,75;
КЦ – коэффициент использования расчетной мощности за один ра-бочий цикл к расчетной мощности, КЦ =0,5;
К – коэффициент теплоотдачи от масла через стальную стенку в воздух, ккал/м2×ч×град, К = 40 ккал/м2×ч×град;
Т – максимально допустимая температура масла в баке. 0С, Т = 70 0С;
Т0 – температура окружающего воздуха, принимаем Т0 = 20 0С.
Тогда: м2
Принимаем бак с размерами 0,6´0,6´0,6 м.
2.2.4. Расчет трубопроводов
Диаметры всасывающих и нагнетательных трубопроводов определяются в зависимости от скорости рабочей жидкости.
Скорость рабочей жидкости в трубопроводе определяем по формуле:
; (2.6)
где Q – расход жидкости, л/мин, Q = 42,8 л/мин;
d – внутренний диаметр трубопровода, мм.
Скорость не должна превышать для всасывающего трубопровода 1,5 м/с, а для нагнетательного 4…5 м/с.
Тогда