Основные принципы построения статистических показателей и их виды
Рефераты >> Статистика >> Основные принципы построения статистических показателей и их виды

На практике, однако, безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов. Поэтому, часто средние величины рассчитываются по неоднородным явлениям. Например, при расчете величины средней заработной платы по Тюменской области, когда совместно анализируется заработная плата труда в автономных округах и в южных районах Тюменской области, а затем полученный средний уровень заработной платы труда сопоставляется с соседними сибирскими регионами.

Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения[5], когда необходимо обеспечить репрезентативность выборки.

Определение максимального и минимального значения признака в изучаемой совокупности также является условием применения средней величины в анализе. В случае больших отклонений между крайними значениями и средней, необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными, кратковременными факторами, то, возможно, крайние значения не характерны для совокупности. Следовательно, их следует исключить из анализа, т.к. они оказывают влияние на размер средней величины [6].

Виды средних величин, способы их вычисления

В статистике выделяют несколько видов средних величин:

1. По наличию признака-веса:

а) невзвешенная средняя величина; б) взвешенная средняя величина.

2. По форме расчета:

а) средняя арифметическая величина; б) средняя гармоническая величина;

в) средняя геометрическая величина; г) средняя квадратическая, кубическая и т.д. величины.

3. По охвату совокупности:

а) групповая средняя величина; б) общая средняя величина.

Рассмотрим подробнее отдельные виды средних величин:

Средние величины различаются в зависимости от учета признаков, влияющих на усредняемую величину:

Если средняя величина рассчитывается для признака, без учета влияния на него каких-либо других признаков, то такая средняя величина называется средней невзвешенной или простой средней.

Если имеются сведения о влиянии на осредняемый признак некоторого признака или нескольких признаков, которые необходимо учесть при расчете для корректного расчета средней величины, то рассчитывается средняя взвешенная.

По форме расчета выделяют несколько видов средних величин, которые образованы из единой степенной средней величины. Степенная средняя величина имеет форму: k – показатель степени; i –i-тый элемент совокупности; n – число наблюдений (число единиц совокупности).

При разных показателях степени k получаем, соответственно, различные по форме средние величины:

Степень средней величины

Название

Формула

k = -1

Гармоническая

k = 0

Геометрическая

k = 1

Арифметическая

k = 2

Квадратическая

Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше.

Средняя арифметическая величина. Средняя арифметическая величина – наиболее характерная форма средней, на примере которой можно выявить все свойства средней.

Формула расчет средней арифметической величины имеет следующий вид: – значение изучаемого признака для i-того элемента совокупности; n – число наблюдений (число единиц совокупности).

Средняя арифметическая невзвешенная величина. Если показатель степени равен 1, то получаем следующую форму средней:

xi – индивидуальные значения признака у отдельных единиц совокупности.

Такая средняя величина называется средней арифметической простой (невзвешенной).

Данная форма средней величины является наиболее распространенной. Она получается путем соотношения суммарного объема индивидуальных значений признака каждого элемента совокупности и числа элементов совокупности. Средняя арифметическая невзвешенная применяется в том случае, если имеются сведения об объеме осредняемого признака.

Средняя арифметическая взвешенная величина. Если имеются сведения о количестве или доле единиц совокупности с тем или иным значением осредняемого признака, то рассчитывается средняя арифметическая взвешенная: xi – индивидуальные значения осредняемого признака у отдельных единиц совокупности; fi – значения признака-веса для каждой единицы совокупности.

В зависимости от осредняемых данных выделяют несколько случаев применения средней арифметической взвешенной величины [2]:

- расчет средней арифметической взвешенной в случае, если осредняемый признак выражен в абсолютных величинах, а признак-вес представлен первичным показателем;

- расчет средней арифметической взвешенной в случае, если осредняемый признак представлен в интервальном виде, т.е. когда данные, находящиеся в числителе исходного соотношения, рассчитываются следующим образом: сначала определяются середины интервалов ( ); затем серединное значение для каждого интервала умножается на значение признака-веса для этого интервала (fi); полученные произведения суммируются ( ). Полученный таким образом числитель соотносится с суммой значений признака-веса.

- расчет средней арифметической взвешенной, если в качестве осредняемого признака принимается удельный вес (т.е. когда совокупность поделена на подгруппы, в каждой из которых определено количество единиц, обладающих изучаемым признаком, доля таких единиц в общей численности подгруппы, и необходимо рассчитать среднее значение доли во всех подгруппах ( )):


Страница: