Методы построения эмпирических зависимостей при обработке экспериментальных данныхРефераты >> Статистика >> Методы построения эмпирических зависимостей при обработке экспериментальных данных
Тогда
Откуда
Тогда линейная регрессия будет иметь вид
Смысл коэффициента beta заключается в том, что при изменении значения X на 1 единицу Y меняется на 0,05 единиц
Параметры показательной регрессии
Нарисуем точки и регрессию:
Рис 17. График регрессии
4.2.2. Дисперсионный анализ для линейной регрессии
Среднее Y
Остаточная вариация (RSS)
Общая вариация (TSS)
Объясняемая вариация (ESS)
Правило сложения дисперсий выполняется
Подсчитаем оценку дисперсии ошибки, т.е.
Среднее X
Найдем оценки дисперсий коэффициентов регрессии
по формулам
Получим
4.2.3. Эластичность показательной регрессии
Подсчитаем функцию эластичности по формуле
В нашем случае
или
Значение эластичности в средней точке
Показывает, что при изменении X на 1% Y меняется на 5,72 процентов [13].
4.2.4. Доверительные интервалы для оцененных параметров
уровень доверия
Количество степеней свободы 30
Критическое значение статистики Стьюдента
Доверительный интервал для beta
равен
Не можем на данном уровне значимости принять гипотезу beta=0 т.к. не попадает в доверительный интервал.
Доверительный интервал для alpha
равен
Мы не можем на данном уровне значимости принять гипотезу alpha=0 т.к. не попадает в доверительный интервал.
4.2.5. Критерий Фишера значимости всей регрессии
Коэффициент корреляции
где
показывает, что связь сильна
Коэффициент детерминации
показывает, что регрессия объясняет 94,68
процентов вариации признака.
Убедимся в значимости модели с помощью статистики Фишера