Методы построения эмпирических зависимостей при обработке экспериментальных данныхРефераты >> Статистика >> Методы построения эмпирических зависимостей при обработке экспериментальных данных
Построение адекватной модели макроэкономического ряда, которую можно использовать для описания динамики ряда и прогнозирования его будущих значений, и адекватных моделей связей этого ряда с другими макроэкономическими рядами невозможно без выяснения природы этого ряда и природы рядов, с ним связываемых, т.е. без выяснения принадлежности ряда к одному из двух указанных классов (TS или DS).
В последние годы в эконометрической литературе большое внимание уделяется исследованию рядов динамики макроэкономических показателей. Разнообразные содержательные задачи экономического анализа требуют использования статистических данных, характеризующих исследуемые экономические процессы и развернутых во времени в форме временных рядов. При этом нередко одни и те же временные ряды используются для решения разных содержательных проблем.
Настоящая работа посвящена исследованию рядов динамики некоторых макроэкономических показателей России. Проблема эконометрического исследования макроэкономических процессов является весьма актуальной. В последнее время появилось достаточно большое количество работ, в которых рассматриваются различные эконометрические аспекты развития российской переходной экономики.
Некоторые элементы структуры ряда иногда можно выявить уже на основании простого визуального анализа графика ряда. Это относится, например, к таким компонентам ряда, как тренд и циклы, сезонные колебания.
Сезонные колебания - это устойчивые циклические изменения показателей (в данном случае ВВП), повторяющиеся из года в год. Они включают в себя две группы факторов: сезонные явления и другие системные воздействия. Сезонные явления - это регулярные явления, сохраняющие ежегодно свои сроки, направления и масштаб (погодные условия зимы-лета, ежегодные праздники). Другие системные воздействия - тоже явления устойчивые и предсказуемые, но повторяющиеся ежегодно не с такой точностью (число рабочих дней в периоде, праздники, приходящиеся на разные даты).
Слагаясь под совместным воздействием систематических и случайных факторов, уровень ряда динамики испытывает также воздействие причин, обусловленных периодичностью колебаний.
В рядах внутригодичной динамики, можно выделить три важнейшие составляющие колеблемости уровней временного ряда: тренд, сезонную и случайную компоненты.
Таким образом, при анализе колеблемости динамических рядов наряду с выделением случайных колебаний возникает и задача изучения периодических колебаний. Как правило, изучение периодических («сезонных») колебаний необходимо с целью исключения их влияния на общую динамику для выявления «чистой» (случайной) колеблемости.
В широком понимании к сезонным относят все явления, которые обнаруживают в своем развитии отчетливо выраженную закономерность внутригодичных изменений, т.е. более или менее устойчиво повторяющиеся из года в год колебания уровней. Часто эти колебания могут быть не связаны со сменой времен года. К сезонным явлениям относят, например, потребление электроэнергии; неравномерность производственной деятельности в отраслях пищевой промышленности, связанных с переработкой сельскохозяйственного сырья; перевозки пассажирским транспортом, спрос на многие виды продукции и услуг и т.д [22].
Как бы ни проявлялась сезонность, она наносит большой ущерб национальной экономике, связанный с неравномерным использованием оборудования и рабочей силы, с неравномерной загрузкой транспорта, необходимостью создания резервов мощностей и т.д. Комплексное регулирование сезонных изменений по отдельным отраслям должно основываться на исследовании сезонных отклонений.
Важнейшими задачами, решаемыми в ходе исследования сезонности, являются следующие:
1) определение наличия сезонности, численное выражение проявления сезонных колебаний и выявление их силы и характера в различных фазах годичного цикла;
2) характеристика факторов, вызывающих сезонные колебания;
3) оценка последствий, к которым приводит наличие сезонных колебаний;
4) математическое моделирование сезонности.
Цели работы:
· Применить эконометрические методы для изучения сезонности ВВП в России;
· Построить модель некоторых макроэкономических показателей экономики РФ.
Глава 1. Изучения ВВП РФ
1.1. Линейная модель
1.1.1.Расчет тенденции
Построим линейный тренд ВВП. Используем данные таблицы.
Таблица 1. Данные к работе
Валовой внутренний продукт в рыночных ценах | квартал | Сельское хозяйство |
1794,1 | 1 | 56,6 |
1899,9 | 2 | 72,2 |
2237 | 3 | 263,1 |
2110,8 | 4 | 89,8 |
1930,6 | 5 | 59 |
2051,7 | 6 | 74,6 |
2376,2 | 7 | 275,3 |
2274,2 | 8 | 100,2 |
2071,6 | 9 | 58,6 |
2205,7 | 10 | 74,6 |
2545,1 | 11 | 288,7 |
2427 | 12 | 102 |
Отметим, что все значения выражены в ценах 2000г и мы, тем самым, исключаем инфляционное влияние на ВВП, оставляя лишь динамику реального ВВП. X[i] – номер квартала. Так X[1] – 1-й квартал 2002г, X[2] – 2-й квартал 2002г. и т.д.