Анализ рентабельности с помощью программы ОлимпРефераты >> Статистика >> Анализ рентабельности с помощью программы Олимп
│ 3 │ -12.35 │ 46.05 │ 6.79 │ -1.82 │ -23.95 │ -0.74 │
│ 4 │ 9.61 │ 2.27 │ 1.51 │ 6.38 │ 7.04 │ 12.18 │
└───┴──────────┴───────────┴───────────────┴───────────┴────────┴─────────┘
Кpитические значения t-pаспpеделения
пpи 26 степенях свободы
веpоятность t-значение
0.900 1.318
0.950 1.710
0.990 2.482
Так как все t-значения полученного уравнения регрессии больше tкр= 1,318, то с вероятностью 0,90 можно утверждать что уравнение регрессии значимо, и результатирующий признак (рентабельность) имеет напрямую зависит от следующих факторов: удельный вес рабочих в составе промышленно-производственного персонала, коэффициент сменности оборудования и премии и вознаграждения на одного работника в % к заработной плате, как было отмечено выше и доказано данным уравнением, имеет обратную зависимость с удельным весом потерь от брака, трудоемкостью единицы продукции и удельным весом покупных изделий.
Анализируя полученное уравнение регрессии, можно сделать вывод, что при увеличении удельного веса рабочих в составе промышленно-производственного персонала на 1% рентабельность увеличивается на 28,691%, а при увеличении коэффициента сменности оборудования на 1 рентабельность уменьшается на 12,346%, если же мы увеличим премии и вознаграждения на одного работника на 1%, то рентабельность увеличится на 9,610%.
Оценки коэффициентов интерпретации линейной регрессии
╔════╤════════╤═════════╤═════════╗
║ N │Коэффиц.│Вета- │Дельта- ║
║ │эластичн│коэффиц. │коэффиц. ║
╠════╪════════╪═════════╪═════════╣
║1 │ +1.575│ +0.237│ +0.090║
║2 │ -1.210│ -0.234│ +0.009║
║3 │ +0.707│ +0.762│ +0.901║
╚════╧════════╧═════════╧═════════╝
Таблица остатков
┌────┬──────────────┬───────────┬────────────┬───────────────┐
│ N │ Эмпирическое │ Расчетное │ Ошибка │ Ошибка │
│ │ значение │ значение │ абсолютная │ относительная │
├────┼──────────────┼───────────┼────────────┼───────────────┤
│ 1 │ 13.26 │ 16.29 │ -3.03 │ -0.23 │
│ 2 │ 10.16 │ 12.13 │ -1.97 │ -0.19 │
│ 3 │ 13.72 │ 18.04 │ -4.32 │ -0.31 │
│ 4 │ 12.85 │ 5.69 │ 7.16 │ 0.56 │
│ 5 │ 10.63 │ 8.59 │ 2.04 │ 0.19 │
│ 6 │ 9.12 │ 9.13 │ -0.01 │ -0.00 │
│ 7 │ 25.83 │ 22.16 │ 3.67 │ 0.14 │
│ 8 │ 23.39 │ 20.04 │ 3.35 │ 0.14 │
│ 9 │ 14.68 │ 12.56 │ 2.12 │ 0.14 │
│ 10 │ 10.05 │ 10.29 │ -0.24 │ -0.02 │
│ 11 │ 13.99 │ 12.45 │ 1.54 │ 0.11 │
│ 12 │ 9.68 │ 14.73 │ -5.05 │ -0.52 │
│ 13 │ 10.03 │ 10.19 │ -0.16 │ -0.02 │
│ 14 │ 9.13 │ 14.48 │ -5.35 │ -0.59 │
│ 15 │ 5.37 │ 7.70 │ -2.33 │ -0.43 │
│ 16 │ 9.86 │ 12.33 │ -2.47 │ -0.25 │
│ 17 │ 12.62 │ 12.31 │ 0.31 │ 0.02 │
│ 18 │ 5.02 │ 7.12 │ -2.10 │ -0.42 │
│ 19 │ 21.18 │ 20.71 │ 0.47 │ 0.02 │
│ 20 │ 25.17 │ 18.30 │ 6.87 │ 0.27 │
│ 21 │ 19.10 │ 16.64 │ 2.46 │ 0.13 │
│ 22 │ 21.00 │ 18.30 │ 2.70 │ 0.13 │
│ 23 │ 6.57 │ 10.89 │ -4.32 │ -0.66 │
│ 24 │ 14.19 │ 12.66 │ 1.53 │ 0.11 │
│ 25 │ 15.81 │ 22.23 │ -6.42 │ -0.41 │
│ 26 │ 5.23 │ 7.85 │ -2.62 │ -0.50 │
│ 27 │ 7.99 │ 7.90 │ 0.09 │ 0.01 │
│ 28 │ 17.50 │ 12.37 │ 5.13 │ 0.29 │
│ 29 │ 17.16 │ 15.65 │ 1.51 │ 0.09 │
│ 30 │ 14.54 │ 15.10 │ -0.56 │ -0.04 │
└────┴──────────────┴───────────┴────────────┴───────────────┘
Характеристики остатков
Среднее значение . 0.000
Оценка дисперсии . 11.6
Оценка приведенной дисперсии 13.4