Классификация сейсмических сигналов на основе нейросетевых технологий
Рефераты >> Кибернетика >> Классификация сейсмических сигналов на основе нейросетевых технологий

Причина использования сейсмических групп также заключается в том, что при таком методе наблюдения можно применять специальные алгоритмы комплексной обработки регистрируемой многоканальной сейсмограммы, которые обеспечивают лучшее качество оценки параметров записанной информации, в сравнении с одиночными сейсмическими станциями.

Одна из многочисленных задач, возникающих при региональном мониторинге, это задача идентификации типа сейсмического источника или задача классификации сейсмических сигналов. Она состоит в том, чтобы по сейсмограмме определить причину возникновения зафиксированного события, т.е. различить взрыв и землетрясение. Ее решение предусматривает разработку определенного метода (решающего правила), который с определенной вероятностью мог бы отнести записанное событие к одному из двух классов. На рис.2.1 представлена схема постановки задачи.

Для решения этой задачи в настоящее время применяются различные аналитические методы из теории статистического анализа, позволяющие с высокой вероятностью правильно классифицировать данные. Как правило, для конкретного региона существует своя база данных записанных событий. Она включает в себя пример сейсмограмм характеризующих как землетрясения, так и взрывы произошедшие в этом регионе с момента начала наблюдения. Все существующие методы идентификации используют эту базу данных в качестве обучающего множества, тем самым, улавливая тонкие различия характерные для данного региона, методы, настраивают определенным образом свои параметры и в итоге учатся классифицировать все обучающее множество на принадлежность к одному из двух классов.

Один из наиболее точных методов основан на выделении дискриминантных признаков из сейсмограмм и последующей классификации векторов признаков с помощью статистических решающих правил. Размерность таких векторов соответствует количеству признаков, используемых для идентификации и, как правило, не превышает нескольких десятков.

Математическая постановка в этом случае формулируется как задача разделения по обучающей выборке двух классов и ставится так: имеется два набора векторов (каждый вектор размерности N): X1,…,Xp1 и Y1,…Yp2. Заранее известно, что Xi (i=1,…,p1) относится к первому классу, а Yj (j=1,…,p2) - ко второму. Требуется построить решающее правило, т.е. определить такую функцию f, что при f(x) > 0 вектор x относился бы к первому классу, а при f(x) < 0 - ко второму, где xÍ{X1,…, Xp1, Y1,…, Yp2}.

3. Статистическая методика решения задачи классификации.

В данном разделе рассматривается методика определения типов сейсмических событий, основанная на выделении дискриминантных признаков из сейсмограмм и последующей классификации векторов признаков с помощью статистических решающих правил.[8]

3.1 Выделение информационных признаков из сейсмограмм.

Исходные данные представлены в виде сейсмограмм (рис. 3.1) – это временное отображение колебаний земной поверхности.

В таком виде анализировать информацию, оценивать различные физические характеристики зафиксированного события достаточно трудно. Существуют различные методы, специально предназначенные для обработки сигналов, которые позволяют выделять определенные признаки, и, в дальнейшем, по ним производить анализ записанного события.

Как правило, в большинстве из этих методов на начальном этапе выполняется следующий набор операций:

1. Из всей сейсмограммы выделяется часть («временное окно»), которое содержит информацию о какой-то отдельной составляющей сейсмического события, например, только о P-волне.

2. Для выделенных данных последовательно применяется такие процедуры как:

а) Быстрое (дискретное) преобразование Фурье (БПФ);

б) Затем накладываются характеристики определенного фильтра, например, фильтра Гаусса.

в) Обратное преобразование Фурье (ОБПФ), для того чтобы получить отфильтрованный сигнал.

Далее, применяются различные алгоритмы для формирования определенного признака. В частности, можно легко найти максимальную амплитуду колебания сигнала, характеристику определяемую выражением max{peakMax – peakMin}. Определив данный параметр для частоты f1 допустим для P волны, а также для частоты f2 для S волны можно найти их отношение P(f1 )/S(f2), и использовать его в качестве дискриминационного признака.

Применяя другие алгоритмы, можно построить большое количество таких признаков. Однако, для задачи идентификации типа сейсмического события, важными являются далеко не все. Из наиболее информативных можно выделить такие признаки, как отношение амплитуд S и P волн, или доля мощности S фазы на высоких (низких) частотах по отношению к мощности S фазы во всей полосе частот.

Как правило, максимальное количество признаков, которое используется для этой задачи составляет около 25 – 30.

3.2 Отбор наиболее информативных признаков для идентификации.

Как было показано выше, в сейсмограмме анализируемого события можно выделить достаточно много различных характеристик, однако, далеко не все из них могут действительно нести информацию, существенную для надежной идентификации взрывов и землетрясений. Многочисленные исследования в дискримининтном анализе показали, что выделение малого числа наиболее информативных признаков исключительно важно для эффективной классификации. Несколько тщательно отобранных признаков могут обеспечить вероятность ошибочной классификации существенно меньшую, чем при использовании полного набора.

Ниже представлена процедура отбора наиболее информативных дискриминантных признаков, осуществляемая на основании обучающих реализаций землетрясений и взрывов из данного региона.[8]

В начале каждый вектор xsj = (x(i)sj, iÎ1,p); где sÎ1,2 -номер класса (s=1 - землетрясения s=2 - взрывы), jÎ1,ns , ns -число обучающих векторов данного класса состоит из p признаков, выбранных из эвристических соображений как предположительно полезные для данной проблемы распознавания. При этом число p может быть достаточно велико и даже превышать число имеющихся обучающих векторов в каждом из классов, но для устойчивости вычислений должно выполняться условие p < n1+n2 . Процедура отбора признаков - итерационная и состоит из p шагов на каждом из которых число отобранных признаков увеличивается на единицу. На каждом промежуточном k-м шаге процедура работает с n1+n2 k-мерными векторами xsj(k) (k£p), сформированных из k-1 признаков, отобранных в результате первых k-1 шагов и некоторого нового признака из числа оставшихся. Отбор признаков основан на оценивании по векторам, состоящим из различных признаков, стохастического расстояния Кульбака-Махаланобиса D(k) между распределениями вероятностей векторов xsj(k):


Страница: