Классификация сейсмических сигналов на основе нейросетевых технологийРефераты >> Кибернетика >> Классификация сейсмических сигналов на основе нейросетевых технологий
· начальное значение шагаh0 ;
· количество итераций, через которое происходит запоминание данных сети (синоптических весов и смещений);
· величина (в процентах) увеличения шага после запоминания данных сети, и величина уменьшения шага в случае увеличения функции ошибки.
В начале обучения записываются на диск значения весов и смещений сети. Затем происходит заданное число итераций обучения с заданным шагом. Если после завершения этих итераций значение функции ошибки не возросло, то шаг обучения увеличивается на заданную величину, а текущие значения весов и смещений записываются на диск. Если на некоторой итерации произошло увеличение функции ошибки, то с диска считываются последние запомненные значения весов и смещений, а шаг обучения уменьшается на заданную величину.
При использовании автономного градиентного алгоритма происходит автоматический подбор длины шага обучения в соответствии с характеристиками адаптивного рельефа, и его применение позволило заметно сократить время обучения сети без потери качества полученного результата.
Эффект переобучения.
Одна из наиболее серьезных трудностей изложенного подхода обучения заключается в том, что таким образом минимизируется не та ошибка, которую на самом деле нужно минимизировать, а ошибка, которую можно ожидать от сети, когда ей будут подаваться совершенно новые наблюдения. Иначе говоря, хотелось бы, чтобы нейронная сеть обладала способностью обобщать результат на новые наблюдения. В действительности сеть обучается минимизировать ошибку на обучающем множестве, и в отсутствие идеального и бесконечно большого обучающего множества это совсем не то же самое, что минимизировать "настоящую" ошибку на поверхности ошибок в заранее неизвестной модели явления [5]. Иначе говоря, вместо того, чтобы обобщить известные примеры, сеть запомнила их. Этот эффект и называется переобучением.
Соответственно возникает проблема – каким методом оценить ошибку обобщения? Поскольку эта ошибка определена для данных, которые не входят в обучающее множество, очевидным решением проблемы служит разделение всех имеющихся в нашем распоряжении данных на два множества: обучающее – на котором подбираются конкретные значения весов, и валидационного – на котором оцениваются предсказательные способности сети. На самом деле, должно быть еще и третье множество, которое вообще не влияет на обучение и используется лишь для оценки предсказательных возможностей уже обученной сети. Ошибки, полученные на обучающем, валидационном и тестовом множестве соответственно называются ошибка обучения, валидационная ошибка и тестовая ошибка.
В нейроинформатике для борьбы с переобучением используются три основных подхода:
· Ранняя остановка обучения;
· Прореживание связей (метод от большого к малому);
· Поэтапное наращивание сети ( от малого к большому).
Самым простым является первый метод. Он предусматривает вычисление во время обучения не только ошибки обучения, но и ошибки валидации, используя ее в качестве контрольного параметра. В самом начале работы ошибка сети на обучающем и контрольном множестве будет одинаковой. По мере того, как сеть обучается, ошибка обучения, естественно, убывает, и, пока обучение уменьшает действительную функцию ошибок, ошибка на контрольном множестве также будет убывать. Если же контрольная ошибка перестала убывать или даже стала расти, это указывает на то, что сеть начала слишком близко аппроксимировать данные и обучение следует остановить. Рисунок 6.5 дает качественное представление об этой методике.
Использование этой методики в работе с сейсмическими данными затруднено тем обстоятельством, что исходная выборка очень мала, а хотелось бы как можно больше данных использовать для обучения сети. В связи с этим было принято решение отказаться от формирования валидационного множества, а в качестве момента остановки алгоритма обучения использовать следующее условие: ошибка обучения достигает заданного минимального уровня, причем значение минимума устанавливается немного большим чем обычно. Для проверки этого условия проводились дополнительные эксперименты, показавшие что при определенном минимуме ошибки обучения достигался относительный минимум ошибки на тестовых данных.
Два других подхода для контроля переобучения предусматривают постепенное изменение структуры сети. Только в одном случае происходит эффективное вымывание малых весов (weight elimination) ,т.е. прореживание малозначительных связей, а во втором, напротив, поэтапное наращивание сложности сети. [3,4,5].
6.6 Формирование обучающей выборки и оценка эффективности обученной нейросетевой модели.
Из исходных данных необходимо сформировать как минимум две выборки – обучающую и проверочную. Обучающая выборка нужна для алгоритма настройки весовых коэффициентов, а наличие проверочной, тестовой выборки нужно для оценки эффективности обученной нейронной сети.
Как правило, используют следующую методику: из всей совокупности данных случайным образом выбирают около 90% векторов для обучения, а на оставшихся 10% тестируют сеть. Однако, в условиях малого количества примеров эта процедура становится неэффективной с точки зрения оценивания вероятности ошибки классификации. В разделе 4.4 был описан другой, наиболее точный метод расчета ошибки классификации. Это, так называемый, метод скользящего экзамена (синонимы: cross-validation, “plug-in”-метод).[7,9].
В терминах нейронных сетей основную идею метода можно выразить так: выбирается один вектор из всей совокупности данных, а остальные используются для обучения НС. Далее, когда процесс обучения будет завершен, предъявляется этот выбранный вектор и проверяется правильно сеть распознала его или нет. После проверки выбранный вектор возвращается в исходную выборку. Затем выбирается другой вектор, на оставшихся сеть вновь обучается, и этот новый вектор тестируется. Так повторяется ровно n1+n2 раз, где n1–количество векторов первого класса, а n2 - второго.
По завершению алгоритма общая вероятность ошибки P подсчитывается следующим образом:
, где
N= n1+n2 - общее число примеров;
E– число ошибочных векторов (сеть неправильно распознала предъявляемый пример).
Недостатком этого метода являются большие вычислительные затраты, связанные с необходимость много раз проводить процедуру настройки весовых коэффициентов, а в следствии этого и большое количество времени, требуемое для вычисления величины .
Однако в случае с малым количеством данных для определения эффективности обученной нейронной сети рекомендуется применять именно метод скользящего экзамена или некоторые его вариации. Стоит отметить, что эффективность статистических методов классификации сейсмических сигналов также проверяется методом скользящего экзамена. Таким образом, применяя его для тестирования нейросетевого подхода, можно корректно сравнить результаты экспериментов с возможностями стандартных методов.