Классификация сейсмических сигналов на основе нейросетевых технологийРефераты >> Кибернетика >> Классификация сейсмических сигналов на основе нейросетевых технологий
| N | ID | Result |Target|
+-----+------+--------+------+
| 1 | 24 | 0.1279 | 0 |
| 2 | 25 | 0.9929 | 1 |
| 3 | 26 | 0.0960 | 0 |
| 4 | 27 | 0.1463 | 0 |
| 5 | 28 | 0.1238 | 0 |
| 6 | 29 | 0.1320 | 0 |
| 7 | 30 | 0.1478 | 0 |
| 8 | 31 | 0.1235 | 0 |
| 9 | 32 | 0.0740 | 0 |
| 10 | 33 | 0.5140 | 1 |
+-----+------+--------+------+
5. Файл описания функций, типов переменных и используемых библиотек “nvclass.h”.
/*
* --- Neuro classificator---
*
* Common defines
*/
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <time.h>
#include <math.h>
//#include <unistd.h>
//#include <sys/file.h>
#include <fcntl.h>
#define DefName "nvclass.inp"
#define MAXDEF 100
#define MAXLINE 256
#define NMAXPAT 100
#define NMXINP 20
#define NMXUNIT 20
#define CONT 0
#define EXIT_OK 1
#define EXIT_CNT 2
#define RESTART 911
#define MAXEXP 700 /* Max arg exp(arg) without error 'OVERFLOW' */
#define Random 10
#define Gauss 20
#define OK 0
#define Error 1
#define Yes 77
#define No 78
#define Min 0 /* Find_MinMax( .) */
#define Max 1
#define TYPE_ONE 21
#define TYPE_TWO 22
#define TYPE_THREE 23
#define TYPE_FOUR 24
int NDATA = 0;
int NUNIT1 = 0;
int NUNIT2 = 0;
int NUNIT3 = 0;
int NOUT = 1;
int NPATTERN = 0; /* Number of input pattern*/
int NWORK = 0; /* Number of work pattern*/
int NTEST= 0; /* Number of test pattern*/
int result;
int STOP = 0;
int NumOut = 250; /* Number of itteration, after which show result in debugfile. */
int Num_Iter=10;/* The parameters requred in the procecc of */
float Percent=0.25; /* dinamic lerning with change 'eta' */
float LearnTolerance = 0.10;
float TestTolerance = 0.5;
float MAX_ERR=0.00001; /* min error */
float eta = 1.0; /* learning coefficient*/
float MIN_ETA=0.000001;
float **Array_MinMax;
int *Cur_Number;
float W1[NMXINP][NMXUNIT];
float W2[NMXUNIT];
float PromW1[NMXINP][NMXUNIT];
float PromW2[NMXUNIT];
float PromW1_OLD[NMXINP][NMXUNIT];
float PromW2_OLD[NMXUNIT];
float Err1[NMXUNIT];
float Err2;
float OLD_ERROR;
float GL_Error=0.0;
float Out1[NMXUNIT];
float Out2;
char NetStr[20]="Auto"; /* String with pattern of Net Structure*/
int Type = TYPE_THREE; /* Enter the mode of work of programm */
int InitFunc = Random; /* Random [=10] weigth will RandomDistribution Gauss [=20] - . GaussianDistributon */
float Constant = 1; /* RandomDistribution [-Constant,Constant]*/
float Alfa = 0; /* GaussianDistribution [Alfa,Sigma]*/
float Sigma = 1; /* . */
int Widrow = No; /* Nguyen-Widrow initialization start weigth*/
int Loop = 1; /* Number repeat of Learning cycle */
char *PatternFile; /* File with input patterns*/
char *TestVector;
char *ReportFile="report.txt"; /* name of report file */
char *NetworkFile; /* Name of input NetConfig file */
char *ResNetFname; /* Name of output NetConfig file */
int DEBUG = Yes; /* if 'Yes' then debug info in the DebugFile */
char *DebugFile="Logfile.log"; /* Name of the debug file*/
int NumberVector = 0; /* Number of TEST vector */
int Shuffle = Yes; /* Flag - shuffle the input vectors*/
int Scaling = Yes; /* Scaling input vector */
int MaxLearnCycles = 1999; /* Max number of learning iteration */
FILE *Dfp; /* Debug file pointer */
FILE *Rfp; /* Report file pointer*/
typedef struct Pattern {
int ID; /* ID number this vector in all set of pattern */
float *A; /* pattern (vector) A={a[0],a[1], .,a[NDATA]} */
float Target; /* class which this vector is present*/
} PAT;
PAT *Input;
PAT *Work;
PAT *Test;
/* lines in defaults file are in the form "NAME=value" */
typedef struct Default {
char *name; /* name of the default */
char *value; /* value of the default */
} DEF;
/* structure of statistics info about one test vector */
typedef struct Statistic {
int ID; /* Primery number from input file */
float Target;
float TotalRes; /* Total propability */
int Flag; /* Flag = 1, if vector was error and = 0
in over case */
float *result; /* Result of testing vector on current
iteration */
int *TmpFlag; /* analog 'Flag' on current itteration */
int *NumIter; /* Number iteration of learning on which
Learning cycle STOPED */
int **NumLE; /* Error vectors after cycle of learning
was test*/
} STAT;
/* structure of the some result of learning cycle */
typedef struct ResLearning {
int NumIter;
int LearnError[NMAXPAT+1]; /* A[0]-count of error,
A[1]-ID1,
A[2]-ID2, .
A[NMAXRL]-ID?.*/
} RL;
/* function prototypes */
void OnlyTestVector(void);
void TestAfterLearn (void);
void CheckOneVector ( void );
void CrossValidation ( void );
DEF **defbuild(char *filename);
DEF *defread(FILE *fp);
FILE *defopen (char *filename);
char *defvalue(DEF **deflist, const char *name);
int defclose(FILE *fp);
void defdestroy(DEF **, int);
void getvalues(void);
void Debug (char *fmt, .);
void Report (char *fmt, .);
void Widrow_Init(void);
int Init_W( void );
float RavnRaspr(float A, float B);
float NormRaspr(float B,float A);
void ShufflePat(int *INP,int Koll_El);
float F_Act(float x);
float Forward (PAT src);
int LearnFunc (void);
int Reset (float ResErr, int Cnt, int N_Err);
void Update_Last (int n, float Total_Out);
void Update_Prom1 (int n);
void Prom_to_W (void);
void Update_All_W (int num, float err_cur );
void Init_PromW(void);
void Prom_to_OLD(void);
int CheckVector(float Res, PAT src);
int *TestLearn(int *src);
RL FurtherLearning(int NumIteration,
float StartLearnTolerans,
float EndLearnTolerans,
RL src);
STAT *definestat (PAT src);
STAT **DefineAllStat (PAT *src,int Num);
void FillStatForm (STAT *st, int iteration, float res, RL lr);
void FillSimpleStatForm (STAT *st, float res);
void destroystat ( STAT *st, int param);
void DestroyAllStat (STAT **st, int Num);
void PrintStatHeader(void);
void printstat(STAT *st);
void PrintStatLearn(RL src);
void PrintTestStat(STAT **st, int len);
void PrintErrorStat (STAT **st,int Len);
int DefineNetStructure (char *ptr);
void getStructure(char buf[20]);
PAT patcpy (PAT dest, PAT src);
PAT* LocPatMemory(int num);
void ReadPattern (PAT *input, char *name,int Len);
void FreePatMemory(PAT* src, int num);
void ShowPattern (char *fname, PAT *src, int len);
void ShowVector(char *fname,PAT src);