Генетические основы устойчивости линий и сортов озимой мягкой пшеницы к возбудителю бурой листовой ржавчины
1.3.3. Гены устойчивости и типы их взаимодействий
С тех пор как Биффен опубликовал первые исследования по генетике устойчивости на основе менделеевских закономерностей [Biffen, 1905, 1907], в мире по этой проблеме выполнены многочисленные работы. Путем гибридологического анализа изучена генетическая основа устойчивости многих сортов пшеницы к видам ржавчины и другим болезням. Установлено, что она контролируется как доминантными, так и рецессивными генами при независимом, комплементарном, полимерном, аддитивном и эпистазном их действии и взаимодействии. Обусловлена моно -, олиго -, или полигенным контролем.
Для обозначения генов устойчивости пшеницы к болезням, по предложению Ауземуса и его коллег, принята единая система символов по первым буквам названия болезни на английском языке [Ausemus et al., 1946]. Идентифицировано 44 гена устойчивости к бурой листовой, 45 – к стеблевой, 28 – к желтой ржавчине, 24 – к мучнистой росе, 10 – к твердой головне. Моносомным и другими методами анализа определена их локализация в хромосомах. Результаты этих работ нашли отражение в многочисленных научных трудах, которые обобщены и систематизированы Макинтошем в каталоге генетических символов пшеницы [McIntosh, 1998]. В СГИ в результате многолетних исследований выявлены сорта пшеницы и гены устойчивости к видам ржавчины и другим патогенам. Они могут быть использованы при создании устойчивых к болезням сортов [Бабаянц, 1990].
1.3.4. Генетические основы типов устойчивости к фитопатогенам
Основанием для современного подразделения устойчивости на типы являются исследования биологической специализации паразитов, физиолого-биохимических, генетических и эпидемиологических взаимоотношений в системе «патоген - хозяин» в определенных условиях среды. Эти исследования позволили фитопатологам выдвинуть понятие о 2-х типах устойчивости – «специфической» или вертикальной и «неспецифической» или горизонтальной [Ван Дер Планк, 1972].
Вертикальная устойчивость может обеспечивать полную защиту от болезни, и обычно эффективна против одних рас паразита и неэффективна против других. Она может оказывать сильное давление на популяцию паразита, приводя или к накоплению вирулентных патотипов, или к возникновению новых рас с новыми генами вирулентности [Watson, Luig, 1968].
В некоторых случаях вертикальная устойчивость может изменяться в зависимости от температурных и световых условий. Она может действовать на всех этапах онтогенеза и быть высокой или умеренной. Эта устойчивость контролируется моно - или олигогенами и часто обусловлена реакцией сверх чувствительности [Гешеле, 1978].
Фитопатологическим проявлением неспецифической устойчивости является слабая или умеренная пораженность растений независимо от расового разнообразия паразита, т.е. эта устойчивость одинаково проявляется по отношению ко всем расам патогена. Неспецифическая устойчивость снижает эффект инфекции после того как она произошла. Болезнь на сортах с таким типом устойчивости может развиваться медленно и урожай при этом существенно не снижается. Неспецифическая устойчивость не обеспечивает полной защиты хозяина, но она более стабильная.
Устойчивость к болезням должна быть относительно стабильной и обеспечивать защиту сортов и гибридов на период возделывания их в производстве. Длительно – сохраняющейся и стабильной может быть как олигогенная вертикальная, так и полигенная горизонтальная устойчивость.
Более длительно устойчивыми могут также быть сорта, сочетающие вертикальную устойчивость с горизонтальной, т.е. многобарьерные [Донцев, 1976].
Устойчивость к патогену может определяться генами разных локусов с одинаковым действием. Они могут быть доминантными и рецессивными. Также могут быть тесно сцеплены в сложных локусах или близко располагаться в хромосоме с другими генами. Гены устойчивости могут быть сцеплены с генами, ответственными за другие признаки и свойства растений [Рачинский, Донцев, 1969; Попереля, Бабаянц, 1978].
На различных этапах онтогенеза растений могут действовать одни и те же или разные гены, ответственные за устойчивость [Бабаянц, Слюсаренко, 1981]. Поэтому различают проростковые, или ювенильные, и возрастные гены устойчивости. Ювенильные гены чаще всего действуют во все фазы развития растения, а возрастные – только с определенной фазы взрослого растения. Действие генов устойчивости пшеницы к болезням может зависеть от генетической среды, в которой они находятся [Бабаянц, Слюсаренко, 1985]. На действие генов устойчивости пшеницы к болезням оказывают влияние внешние условия, прежде всего температура. Имеется многочисленная информация об изменении типа и интенсивности поражения растений видами ржавчины и другими болезнями в зависимости от температуры [Одинцова, Пеуша, 1984].
У растений разных сельскохозяйственных культур идентифицировано большое число генов устойчивости к болезням. Принята общая международная классификация символов и описания генов.
У пшеницы гены устойчивости к бурой листовой ржавчине называются «Lr»-гены от английского Leaf rust – листовая ржавчина. Эту номенклатуру символов предложил Бригл [Briggle, 1966].
1.3.5. Lr-гены устойчивости к возбудителю бурой листовой ржавчины
В настоящее время идентифицировано 44 гена устойчивости пшеницы к возбудителю бурой листовой ржавчины Puccinia recondita Rob ex Desm f. sp. tritici. Они занесены Макинтошем в каталог генов устойчивости пшеницы к возбудителям инфекционных заболеваний и вредителям [McIntosh, 1998].
Обширная информация об Lr-генах представлена в работе Макинтоша, Веллинга и Парка [McIntosh, Welling, Park, 1995]. В ней указано, что Lr1, Lr2, Lr3 впервые идентифицировал Ауземус в 1946 году [Ausemus et al., 1946]. Гены локализованы: Lr1- в хромосоме 5D [McIntosh et al., 1965], Lr2- в 2DS, Lr3- в 6B. Lr2 имеет три аллели- a, b, c. Носителями Lr1 являются сорта Малакоф, Сонора 64, Тобари 66, а Lr2а – Медитеранеан, Демократ, Lr2b – Карина, Lr2c- Бревит и Лорос. Ген Lr3 имеет три аллели: a, bg, ka. Lr3a имеют сорта Демократ, Медитеранеан, Кук, Хана, Безостая1, Мироновская 808; Lr3bg – Баге, Lr3ka – Клейн Аниверсарио.
Гены Lr4, Lr5, Lr6, Lr7 и Lr8 идентифицированы Пирсом в 1961 г .
Lr9 интрогрессирован в пшеницу из Aegilops umbellulatum. Макинтошем установлено, что этот ген локализован в хромосоме 6В [McIntosh et al., 1965]. Носителями этого гена являются сорта Трансфер, Абе, Артур 71, Оазис, Кокер.
Lr10 впервые идентифицирован Андерсоном в 1961 году [Anderson et al., 1961]. Он локализован в хромосоме 1А [Dyck and Kerber, 1971]. Носителями этого гена являются сорта Ли, Габо, Селкирк и многие другие.
Lr11 впервые идентифицировал Солиман в 1958 году. Он локализован в хромосоме 2А [Soliman et al.,1964]. Носители этого гена сорта Болгария 88, Оазис и другие.
Lr12 впервые идентифицировал Дик в 1966 году [Dyck et al., 1966]. Он локализован в хромосоме 4В [McIntosh and Baker., 1966] и имеется у сортов Опал, Чайниз Спринг и других.
Lr13 также идентифицирован Диком в 1966 году. Он локализован в хромосоме 2BS [Hawthorn and McIntosh, 1981 и имеется у сортов Маниту, Ред Бобс, Атлас66, Фронтана.