Генетические основы устойчивости линий и сортов озимой мягкой пшеницы к возбудителю бурой листовой ржавчины
Рефераты >> Биология >> Генетические основы устойчивости линий и сортов озимой мягкой пшеницы к возбудителю бурой листовой ржавчины

Таким образом, фаза диплоида значительно преобладает над фазой гаплоида, и только на ней образуются все виды спор, которые служат для размножения и расселения вида [Гешеле, 1978].

1.2. Специализация и расовый состав

В процессе сопряженной эволюции паразиты строго специализировались к своим питающим хозяевам – к родам и видам семейств растений [Вавилов, 1986]. Одни из них специализировались к паразитированию на определенном роде и виде растений (узкоспециализированные), другие к паразитированию на различных видах одного или нескольких семейств (широкоспециализированные). В свою очередь формы состоят из физиологических рас. Генотипы паразита, одинаково поражающие наборы сортов – диффунциаторов, фитопатологами были приняты за основу систематической единицы названной ими «физиологическая раса».

Возбудитель бурой листовой ржавчины Puccinia recondita Rob ex Desm f. sp. tritici не имеет специализированных форм, в силу узкой специализации вида, и приходится говорить не о формах, но сразу о физиологических расах бурой листовой ржавчины [Гешеле, 1979].

Физиологические расы образуются в результате мутаций или рекомбинаций при половом процессе. Они отличаются одна от другой по наличию генов вирулентности или их комбинаций, которые могут быть обнаружены по реакции на растениях-хозяевах. Для анализа рас выделяются моноизоляты, каждый из которых является потомством одной уредоспоры, состоящим из генетически однородных биотипов. Расы паразитов определяют с помощью сортовых ключей [Вавилов, 1986].

Первоначально при изучении рас в качестве «тестирующих» были отобраны сорта, которые вошли в специальные наборы дифференциаторов. Со временем обнаружилось, что они не могут выявить генетическое разнообразие патогена, так как не способны охватить всего генетического разнообразия растений-хозяев. Поэтому к основному набору дифференциаторов добавляют дополнительные сорта, интересующие селекционеров как доноры устойчивости. Это позволяет выявить в пределах существующих физиологических рас подрасы (биотипы).

В настоящее время идентифицировано более 200 рас Puccinia recondita Rob ex Desm f. sp. tritici. [Лесовой, Суворова, 1990]. Специализированные расы обозначают обыкновенно номерами или буквами. Расы в большинстве случаев характеризуются определенным географическим ареалом. Состав рас может меняться из года в год благодаря действию отбора, и возможен занос рас из других районов [Вавилов, 1986].

Расовый состав Puccinia recondita Rob ex Desm f. sp. tritici, наблюдаемый на пшенице в степи Украины изучался в Селекционно-генетическом институте. Расы отличаются частотой встречаемости, вирулентностью – авирулентностью к сортам и линиям пшеницы с определенными Lr– генами.

До 1996г. доминировала раса 77. В 1997 - 2002 г.г. превалировала раса 144, а в 2003 – 77 раса бурой листовой ржавчины вновь стала основной.

Из многообразия возникающих в процессе эволюции рас и биотипов более жизнеспособными оказываются те, которые лучше адаптированы к климатическим условиям и своим питающим растениям – хозяевам [Бабаянц, 1990].

1.3. Генетические основы устойчивости пшеницы к фитопатогенам.

Селекция сельскохозяйственных культур на устойчивость к возбудителям инфекционных заболеваний является наиболее актуальной и значимой как наиболее экономный путь к эффективной защите растений. Вместе с тем экономическая напряженность в результате интенсивного применения фунгицидов настоятельно требует широкого внедрения в производство относительно чистых методов борьбы с болезнями. Среди них возделывание генетически защищенных сортов является одним из основных. Создание таких сортов – весьма сложное дело, требующее глубоких знаний о растениях-хозяевах и самих патогенах, закономерностях их взаимоотношений в зависимости от условий окружающей среды. Наиболее важное для селекции – представление о генетике устойчивости. Прежде всего, необходима информация о генах устойчивости, их локализации в хромосомах и взаимодействии, о наследовании устойчивости и генетическом контроле различных ее типов. Такая информация позволяет объективно составлять программу гибридизации и планировать стратегию селекции на иммунитет [Бабаянц, 1990].

1.3.1. Гипотеза Флор «ген на ген»

Растения и возбудители болезней в природе эволюционно тесно связаны и пригнаны друг другу. Взаимодействие генов растений и паразитов экспериментально подтвердила американский фитопатолог Флор [Flor, 1956], выдвинувшая гипотезу «ген на ген». На основе своих исследований Флор сделала вывод о том, что каждому гену устойчивости или восприимчивости растения-хозяина соответствует определенный комплементарный ген вирулентности или авирулентности паразита. Если аллели генов устойчивости и вирулентности доминантны, то растение устойчиво к болезни. Если же одна из взаимодействующих аллелей или обе из них находятся в гомозиготном рецессивном состоянии, то наблюдается восприимчивость к заболеваниям. Исходя из этого, Флор установила, что гены устойчивости доминантны, а гены вирулентности рецессивны.

Считают, что в ряде случаев гену устойчивости растения может соответствовать несколько генов патогенности паразита [Щербаков, 1973]. Возможна обратная ситуация, когда один ген патогенности соответствует нескольким генам устойчивости.

Отношения «ген на ген» являются результатом сопряженной эволюции паразита и растения – хозяина. Длительная совместная эволюция растений – хозяев и паразитов приводит к развитию взаимной толерантности. Сильно страдающие от поражения растения не выдерживают конкуренцию с теми, которые страдают меньше. В результате естественного отбора вид способен повышать свою выносливость. Генотипы, лучше адаптированные к экологическим условиям среды оказываются более выносливыми и к поражению болезнями [Гешеле, 1978]. С одной стороны естественный отбор благоприятствует тем мутациям хозяина, которые ставят паразита в невыгодное положение. С другой стороны он благоприятствует тем мутациям паразита, которые усиливают способность паразита к воспроизводству по сравнению со способностями растения – хозяина. В этом взаимодействии сначала происходит увеличение частот генов устойчивости, затем частот генов вирулентности. Последние преодолевают устойчивость хозяина. В результате такой совместной эволюции между генетическими системами хозяина и паразита устанавливаются взаимоотношения по принципу «ген на ген».

В процессе эволюции у растений и их паразитов выработались такие механизмы, которые обеспечивают сохранение генетического материала разнообразия обоих популяций [Будашкина, Дьяков, 1973].

На основе гипотезы Флор Х. Пирсоном был разработан метод идентификации генов устойчивости с помощью «тестирующих» рас патогенов с известной вирулентностью для различных схем хозяин-паразит [Person, 1959]. Вместе с тем некоторые авторы [Одинцова, Михайлова, 1982] высказали целый ряд ограничений применения этого метода. Рядом исследователей было показано, что гены устойчивости могут быть тесно сцеплены, в т. ч. в сложных локусах (полигенный локус) или близко располагаться в хромосоме с другими генами [Рачинский, 1969; Щербаков, 1973]. При этом в блоки могут входить гены, контролирующие устойчивость к разным болезням. В результате мутации гена в блоке устойчивость к одним болезням может сцеплено наследоваться с восприимчивостью к другим [Щербаков, 1973].


Страница: