Динамика твердого тела
Рефераты >> Физика >> Динамика твердого тела

Здесь

$ J = J_{0} + mR^{2}. $

(3.34)

В проекции на ось вращения (ось y)

$ J \cdot {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} = Rmg \cdot \sin \left( {\displaystyle 180^{0} - \alpha } \right) = Rmg\sin \alpha . $

(3.35)

Ускорение центра масс выражается через угловое ускорение

$ a = {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}}R = {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.36)

Кинетическая энергия при плоском движении.

Кинетическая энергия твердого тела представляет собой сумму кинетических энергий отдельных частиц:

$ T = {\displaystyle \sum\limits_{i} {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle m_{i} v_{i}^{2} }}{\displaystyle {\displaystyle 2}}}} } = {\displaystyle \sum\limits_{i} {\displaystyle {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}} }m_{i} \left( {\displaystyle {\displaystyle \bf v}_{0} + {\displaystyle \bf u}_{i} } \right)^{2}, $

(3.37)

где ${\displaystyle \bf v}_{0}$- скорость центра масс тела, ${\displaystyle \bf u}_{i}$- скорость i-й частицы относительно системы координат, связанной с центром масс и совершающей поступательное движение вместе с ним. Возводя сумму скоростей в квадрат, получим:

$ T = {\displaystyle \frac{\displaystyle {\displaystyle v_{0}^{2} }}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } } + {\displaystyle \bf v}_{0} {\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }{\displaystyle \bf u}_{i} + {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}{\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }u_{i}^{2} = {\displaystyle \frac{\displaystyle {\displaystyle mv_{0}^{2} }}{\displaystyle {\displaystyle 2}}} + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} \omega ^{2}}}{\displaystyle {\displaystyle 2}}}, $

(3.38)

так как ${\displaystyle \sum\limits_{i} {\displaystyle m_{i} } }{\displaystyle \bf u}_{i} = 0$(суммарный импульс частиц в системе центра масс равен нулю).

Таким образом, кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений (теорема Кенига). Если рассматривать плоское движение как вращение вокруг мгновенной оси, то кинетическая энергия тела есть энергия вращательного движения.

В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).

Приращение кинетической энергии цилиндра равно убыли его потенциальное энергии:

$ {\displaystyle \frac{\displaystyle {\displaystyle J\omega ^{2}}}{\displaystyle {\displaystyle 2}}} = mgh = mgx\sin \alpha . $

(3.39)

Здесь $x$- длина наклонной плоскости, $J = J_{0} + mR^{2}$- момент инерции цилиндра относительно мгновенной оси вращения.

Поскольку скорость оси цилиндра $v = \frac{\displaystyle dx}{\displaystyle dt} = \omega R,$то

$ {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle 2}}} \cdot {\displaystyle \frac{\displaystyle {\displaystyle v^{2}}}{\displaystyle {\displaystyle R^{2}}}} = mgx\sin \alpha . $

(3.40)

Дифференцируя обе части этого уравнения по времени, получим

$ {\displaystyle \frac{\displaystyle {\displaystyle J}}{\displaystyle {\displaystyle 2R^{2}}}} \cdot 2v{\displaystyle \frac{\displaystyle {\displaystyle dv}}{\displaystyle {\displaystyle dt}}} = mg \cdot {\displaystyle \frac{\displaystyle {\displaystyle dx}}{\displaystyle {\displaystyle dt}}} \cdot \sin \alpha , $

(3.41)

откуда для линейного ускорения $a = {\displaystyle \frac{\displaystyle {\displaystyle dv}}{\displaystyle {\displaystyle dt}}}$оси цилиндра будем иметь то же выражение, что и при чисто динамическом способе решения (см. (3.27, 3.36)).

Замечание. Если цилиндр катится с проскальзыванием, то изменение его кинетической энергии будет определяться также и работой сил трения. Последняя, в отличие от случая, когда тело скользит по шероховатой поверхности, не вращаясь, определяется, в соответствии с (3.14), полным углом поворота цилиндра, а не расстоянием, на которое переместилась его ось.

Заключение

Динамика твердого тела на данном этапе используется для тел, движущихся в сплошной среде.

В задаче о полете тела с тремя несущими поверхностями при наличии динамической асимметрии определены условия, при которых проявляются синхронизмы 1:3. С увеличением угловой скорости вращения тела около продольной оси даже на поверхности рассеивания заметно ослабление этого эффекта.


Страница: