Динамика твердого тела
Рефераты >> Физика >> Динамика твердого тела

В качестве примера рассмотрим задачу о скатывании цилиндра с наклонное плоскости. Приведем два способа решения этой задачи с использованием уравнений динамики твердого тела.

Первый способ. Рассматривается вращение цилиндра относительно оси, проходящее через центр масс (рис. 3.11).

Рис. 3.11.

Система уравнений (3.19 - 3.20) имеет вид:

$ {\displaystyle \left\{\displaystyle {\displaystyle \begin{array}{l} {\displaystyle m \cdot {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{0} }}{\displaystyle {\displaystyle dt}}}m{\displaystyle \bf g} + {\displaystyle \bf F}_{тр} + {\displaystyle \bf N};} \\ {\displaystyle J_{0} {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times {\displaystyle \bf F}_{тр} .} \\ \end{array}} \right.} \quad \begin{array}{l} (3.21) \\ (3.22) \\ \end{array} $

К этой системе необходимо добавить уравнение кинематической связи

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{0} }}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}}. $

(3.23)

Последнее уравнение получается из условия, что цилиндр скатывается без проскальзывания, то есть скорость точки М цилиндра равна нулю.

Уравнение движения центра масс (3.1) запишем для проекций ускорения и сил на ось x вдоль наклонной плоскости, а уравнение моментов (3.22) - для проекций углового ускорения и момента силы трения на ось y , совпадающую с осью цилиндра. Направления осей x и у выбраны согласованно, в том смысле, что положительному линейному ускорению оси цилиндра соответствует положительное же угловое ускорение вращения вокруг этой оси. В итоге получим:

$ {\displaystyle \left\{\displaystyle {\displaystyle \begin{array}{l} {\displaystyle ma = mg\sin \alpha - F_{тр} ;} \\ {\displaystyle J_{0} {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} = F_{тр} \cdot R;} \\ {\displaystyle a = {\displaystyle \frac{\displaystyle {\displaystyle d\omega }}{\displaystyle {\displaystyle dt}}} \cdot R.} \\ \end{array}} \right.} \quad \begin{array}{l} (3.24) \\ (3.25) \\ (3.26) \\ \end{array} $

откуда

$ a = {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.27)

Следует подчеркнуть, что $F_{тр}$- сила трения сцепления - может принимать любое значение в интервале от О до $\left( {\displaystyle F_{тр} } \right)_{макс}$(сила трения скольжения) в зависимости от параметров задачи. Работу эта сила не совершает, но обеспечивает ускоренное вращение цилиндра при его скатывании с наклонной плоскости. В данном случае

$ F_{тр} = {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle R^{2}}}} \cdot {\displaystyle \frac{\displaystyle {\displaystyle g\sin \alpha }}{\displaystyle {\displaystyle 1 + {\displaystyle \frac{\displaystyle {\displaystyle J_{0} }}{\displaystyle {\displaystyle mR^{2}}}}}}}. $

(3.28)

Если цилиндр сплошной, то

$ J_{0} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 2}}}mR^{2}; \quad a = {\displaystyle \frac{\displaystyle {\displaystyle 2}}{\displaystyle {\displaystyle 3}}}g\sin \alpha ; \quad F_{тр} = {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 3}}}mg\sin \alpha . $

(3.29)

Качение без проскальзывания определяется условием

$ F_{тр} \le kN, $

(3.30)

где $k$- коэффициент трения скольжения, $N = mg\cos \alpha$- сила реакции опоры. Это условие сводится к следующему:

$ {\displaystyle \frac{\displaystyle {\displaystyle 1}}{\displaystyle {\displaystyle 3}}}mg\sin \alpha \le kmg\cos \alpha , $

(3.31)

или

$ tg\alpha \le 3k. $

(3.32)

Второй способ. Рассматривается вращение цилиндра относительно неподвижной оси, совпадающей в данный момент времени с мгновенной осью вращения (рис. 3.12).

Рис. 3.12.

Мгновенная ось вращения проходит через точку соприкосновения цилиндра и плоскости (точку М). При таком подходе отпадает необходимость в уравнении движении центра масс и уравнении кинематической связи. Уравнение моментов относительно мгновенной оси имеет вид:

$ J \cdot {\displaystyle \frac{\displaystyle {\displaystyle d\omega}}{\displaystyle {\displaystyle dt}}} = {\displaystyle \bf R}\times \left( {\displaystyle m{\displaystyle \bf g}} \right). $

(3.33)


Страница: