Динамика твердого тела
Рефераты >> Физика >> Динамика твердого тела

Введение

o I. Вращение твердого тела вокруг неподвижной оси

§ Кинетическая энергия вращающегося тела и работа внешних сил (ось вращения неподвижна)

§ Свободные оси. Устойчивость свободного вращения

§ Центр удара

o II. Плоское движение твердого тела

§ Кинетическая энергия при плоском движении

Заключение

Введение

В общем случае абсолютно твердое тело имеет 6 степеней свободы, и для описания его движения необходимы 6 независимых скалярных уравнений или 2 независимых векторных уравнения.

Вспомним, что твердое тело можно рассматривать как систему материальных точек, и, следовательно, к нему применимы те уравнения динамики, которые справедливы для системы точек в целом.

Обратимся к опытам.

Возьмем резиновую палку, утяжеленную на одном из концов и имеющую лампочку точно в центре масс (рис. 3.1). Зажжем лампочку и бросим палку из одного конца аудитории в другой, сообщив ей произвольное вращение - траекторией лампочки будет при этом парабола - кривая, по которой полетело бы небольшое тело, брошенное под углом к горизонту.

Рис. 3.1.

Стержень, опирающийся одним из концов на гладкую горизонтальную плоскость (рис.1.16), падает таким образом, что его центр масс остается на одной и той же вертикали - нет сил, которые сдвинули бы центр масс стержня в горизонтальном направлении.

Опыт, который был представлен на рис. 2.2 а, в, свидетельствует о том, что для изменения момента импульса тела существенна не просто сила, а ее момент относительно оси вращения.

Тело, подвешенное в точке, не совпадающей с его центром масс (физический маятник), начинает колебаться (рис. 3.2а) - есть момент силы тяжести относительно точки подвеса, возвращающий отклоненный маятник в положение равновесия. Но тот же маятник, подвешенный в центре масс, находится в положении безразличного равновесия (рис. 3.2б).

Рис. 3.2.

Роль момента силы наглядно проявляется в опытах с "послушной" и "непослушной" катушками (рис. 3.3). Плоское движение этих катушек можно представить как чистое вращение вокруг мгновенной оси, проходящее через точку соприкосновения катушки с плоскостью. В зависимости от направления момента силы F относительно мгновенной оси катушка либо откатывается (рис. 3.За), либо накатывается на нитку (рис. 3.Зб). Держа нить достаточно близко к горизонтальной плоскости, можно принудить к послушанию самую "непослушную" катушку.

Рис. 3.3.

Все эти опыты вполне согласуются с известными законами динамики, сформулированными для системы материальных точек: законом движения центра масс и законом изменения момента импульса системы под действием момента внешних сил. Таким образом, в качестве двух векторных уравнений движения твердого тела можно использовать:

Уравнение движения центра масс

$ m{\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf v}_{{\displaystyle \bf 0}} }}{\displaystyle {\displaystyle dt}}} = \sum {\displaystyle {\displaystyle \bf F}} $

(3.1)

Здесь ${\displaystyle \bf v}_{{\displaystyle \bf 0}}$- скорость центра масс тела, $\sum {\displaystyle {\displaystyle \bf F}}$- сумма всех внешних сил, приложенных к телу.

Уравнение моментов

$ {\displaystyle \frac{\displaystyle {\displaystyle d{\displaystyle \bf L}}}{\displaystyle {\displaystyle dt}}} = \sum {\displaystyle {\displaystyle \bf M}} $

(3.2)

Здесь L- момент импульса твердого тела относительно некоторой точки, $\sum {\displaystyle {\displaystyle \bf M}}$- суммарный момент внешних сил относительно той же самой точки.

К уравнениям (3.1) и (3.2), являющимся уравнениями динамики твердого тела, необходимо дать следующие комментарии:

1. Внутренние силы, как и в случае произвольной системы материальных точек, не- влияют на движение центра масс и не могут изменить момент импульса тела.

2. Точку приложения внешней силы можно произвольно перемещать вдоль линии, по которой действует сила. Это следует из того, что в модели абсолютно твердого тела локальные деформации, возникающие в области приложения силы, в расчет не принимаются. Указанный перенос не повлияет и на момент силы относительно какой бы то ни было точки, так как плечо силы при этом не изменится.

Векторы L и M в уравнении (3.2), как правило, рассматриваются относительно некоторой неподвижной в лабораторной системе XYZ точки. Во многих задачах L и M удобно рассматривать относительно движущегося центра масс тела. В этом случае уравнение моментов имеет вид, формально совпадающий с (3.2). В самом деле, момент импульса тела ${\displaystyle \bf L}_{0}$относительно движущегося центра .масс О связан с моментом импульса ${\displaystyle \bf L}_{{\displaystyle 0}'}$относительно неподвижной - точки O' соотношением:

$ {\displaystyle \bf L}_{0} = {\displaystyle \bf L}_{{\displaystyle 0}'} - {\displaystyle \bf R}\times {\displaystyle \bf p}, $

(3.3)

где R - радиус-вектор от O' к О, p - полный импульс тела. Аналогичное соотношение легко может быть получено и для моментов силы:

$ {\displaystyle \bf M}_{0} = {\displaystyle \bf M}_{{\displaystyle 0}'} - {\displaystyle \bf R}\times {\displaystyle \bf F}, $

(3.4)


Страница: