Методика изучения многогранников в школьном курсе стереометрииРефераты >> Педагогика >> Методика изучения многогранников в школьном курсе стереометрии
Так как основные геометрические тела, изучаемые в школе, это призмы и пирамиды, то задачи, приведенные ниже, посвящены темам: «Призма. Пирамида. Их сечения. Площади полной и боковой поверхностей». Кроме того, задачи разбиты на типы: задачи на доказательство, на исследование, на построение, на вычисление.
Большое количество задач можно предлагать для решения вместе с готовым рисунком, когда один рисунок будет сопровождать несколько задач, в которых идет речь об одном и том же геометрическом теле. Но готовые рисунки сопутствуют далеко не всем задачам, поскольку само изготовление изображения является важной частью решения. Учитель может варьировать стратегию обучения. В одних случаях - начинать с готового рисунка, а в других демонстрировать рисунок (на откидной доске или на экране) только после того, как учащиеся сами сделали нужные изображения в своих тетрадях.
4.1 Задачи по теме «Призма».
Для простоты введем обозначения. Буквами а, b, c обозначим соответственно длину, ширину и высоту прямоугольного параллелепипеда, буквой d - длину диагонали основания. Прописные буквы Н, D и P соответствуют высоте, длине наибольшей диагонали призмы и периметру ее основания, а буквы s, Q , Sб и Sn - площадям: s – основания, Q - диагонального сечения, Sб - боковой поверхности, Sn - полной поверхности призмы. Угол между диагональю прямоугольного параллелепипеда и плоскостью основания обозначаем греческой буквой γ.
1) Задачи на вычисление.
Четырехугольная призма.
Перед решением задач 1 и 2 следует повторить формулы для вычисления элементов куба со стороной a:
, , , .
Задача 3 и некоторые из следующих за ней, в которых речь идет о прямоугольном параллелепипеде, потребуют использования формул:
D2= а2+ b2+ с2 ,d2=a2 +b2 , s = аb, Q = d ∙ с, Sб= Р∙с.
1. Ребро куба равно а. Найдите: диагональ грани; диагональ куба; периметр основания; площадь грани; площадь диагонального сечения; площадь поверхности куба; периметр и площадь сечения, проходящего через концы трех ребер, выходящих из одной и той же вершины. .
2. По рис. 4.1 и по данным элементам в табл. 1 найдите остальные элементы куба.
Таблица 1
а |
d |
D |
s |
Q |
5 | ||||
14 | ||||
11 | ||||
196 | ||||
|
3. По рис.4.2 и по данным элементам в табл. 2 найдите остальные элементы прямоугольного параллелепипеда.
Таблица 2.
а |
b |
с |
d |
D |
γ |
s |
Q |
3 |
4 |
5 | |||||
| |||||||
5 |
12 | ||||||
7 |
24 |
45˚ | |||||
8 |
6 |
| |||||
15 |
17 |
17 |
4. Перпендикулярным сечением наклонной 4-угольной призмы является ромб со стороной 3 см. Вычислите площадь боковой поверхности призмы, если боковое ребро равно 12 см.
5. Найдите боковую поверхность наклонного параллелепипеда с боковым ребром 32 см и смежными сторонами перпендикулярного сечения 10 см и 8 см.
6. Сторона основания правильной четырехугольной призмы равна 3 см. Высота призмы - 5 см. Найдите: диагональ основания; диагональ боковой грани; диагональ призмы; площадь основания; площадь диагонального сечения; площадь боковой поверхности; площадь поверхности призмы.
7. Площадь боковой поверхности правильной четырехугольной призмы равна -32 см, а площадь поверхности 40 см. Найдите высоту призмы.
Решение. Площадь основания равна S=(см2), сторона основания - 2 см, периметр основания Р = 8 см, а высота призмы (см2).
Треугольная, шестиугольная и n-угольная призмы.
Перед решением задач целесообразно повторить формулы; Sб = РН и Sп = 2Sб + 2s для произвольной призмы, а также формулы:
Р = 3а, s = - для правильной треугольной и