Методика изучения многогранников в школьном курсе стереометрииРефераты >> Педагогика >> Методика изучения многогранников в школьном курсе стереометрии
Содержание
Введение
1. Подходы к определению многогранника и его видов
1.1. Подходы к определению многогранника
1.2. Подходы к определению выпуклого многогранника
1.3. Подходы к определению правильного многогранника
2.Изучение темы «Многогранники» в школьном курсе стереометрии
2.1. Изучение темы в учебнике Атанасяна Л.С.
2.2. Изучение темы в учебнике Смирновой И.М.
2.3. Изучение темы в учебнике Александрова А.Д.
3. Виды и роль наглядных средств при изучении многогранников
4. Опорные задачи при изучении темы «Многогранники»
4.1. Задачи по теме «Призма»
4.2. Задачи по теме «Пирамида»
Заключение
Литература
Приложение 1. Опытное преподавание
Приложение 2. Различные доказательства теоремы Эйлера
Введение
Тема «Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии. Изучение параллельных и перпендикулярных прямых и плоскостей, двугранных углов и другое, так же как введение векторов и координат,- все это только начала стереометрии, подготовка средств для исследования ее более содержательных объектов – главным образом тел и поверхностей.
Центральная роль многогранников определяется прежде всего тем, что многие результаты, относящиеся к другим телам, получаются исходя из соответствующих результатов для многогранников; Достаточно вспомнить определение объемов тел и площадей поверхностей путем предельного перехода от многогранников.
Кроме того, многогранники сами по себе представляют чрезвычайно содержательный предмет исследования, выделяясь среди всех тел многими интересными свойствами, специально к ним относящимися теоремами и задачами. Можно, например, вспомнить теорему Эйлера о числе граней, ребер и вершин, симметрию правильных многогранников, вопрос о заполнении пространства многогранниками и др.
Многогранникам должно быть уделено в школьном курсе больше внимания еще и потому, что они дают особенно богатый материал для развития пространственных представлений, для развития того соединения живого пространственного воображения со строгой логикой, которое составляет сущность геометрии. Уже самые простые факты, касающиеся многогранников, требуют такого соединения, которое оказывается при этом не совсем легким делом. Даже такой простой факт, как пересечение диагоналей параллелепипеда в одной точке, требует усилия воображения, чтобы его увидеть наглядно, и нуждается в строгом доказательстве.
Более того, использование многогранников с самого начала изучения стереометрии служит различным дидактическим целям. На многогранниках удобно демонстрировать взаимное расположение прямых и плоскостей в пространстве, показывать применение признаков параллельности и перпендикулярности прямых и плоскостей в пространстве. Иллюстрация первых теорем стереометрии на конкретных моделях повышает интерес учащихся к предмету.
Также одной из основных задач обучения математики является развитие у учащихся абстрактного мышления. Этой цели в значительной мере способствует применение наглядных пособий, причем не только в младших классах, но и в старших. Широкие возможности для реализации этой цели предоставляет тема «Многогранники», в частности, самостоятельное изготовление учениками наглядных пособий. В процессе изготовления моделей многогранников, кроме теоретических знаний и навыков, ученики закрепляют сформировавшиеся новые понятия при помощи чертежа и фактического решения задач на построение. При самостоятельном изготовлении моделей образ создается по частям, в силу этого с ними можно производить различные манипуляции. При этом все их свойства и особенности легко познаются и прочно закрепляются в памяти учащихся.
Цель работы: рассмотреть особенности методики изучения темы «Многогранники» в курсе стереометрии 10–11 классов.
Задачи работы:
1) рассмотреть подходы к основным определениям данной темы: многогранника, выпуклого многогранника, правильного многогранника;
2) изучить изложение данной темы в школьных учебниках;
3) выделить наглядные средства, которые могут быть применены при изучении многогранников;
4) подобрать основные задачи для решения по данной теме;
5) осуществить опытное преподавание.
Гипотеза исследования: изучение темы «Многогранники» в школе будет более успешным, если при подготовке к урокам учитель математики будет учитывать следующие моменты:
· существующие подходы к определению понятия многогранник и правильный многогранник;
· подходы к изучению темы в разных учебниках геометрии;
· особенности изучения частных видов многогранников;
· удачно подобранный задачный материал.
Объект исследования: процесс обучения геометрии в 10-11 классах средней школы.
Предмет исследования: методика изучения многогранников.
1. Подходы к определению многогранника и его видов.
1.1 подходы к определению многогранника.
Само определение понятия многогранника оказывается как раз таким вопросом, где необходимо особенно внимательно сочетать наглядные представления, рассмотрение реальных примеров и логической точности формулировок. Формулировки должны исходить из реальных примеров, из наглядных представлений и возвращаться к ним для проверки и дальше - для применения.
Выделяют два основных способа введения понятия многогранника в школьном курсе стереометрии:
1) многогранник как поверхность (например, в учебниках [3] и [22] );
2) многогранник как тело.
Чаще используется второй путь.
Дать строгое определение понятию многогранника в школе трудно, так как в определение входят такие понятия как поверхность, ограниченность, внутренние точки и др. Такая попытка была сделана в книге В.М. Клопского, З.А. Скопеца, М.И. Ягодовского «Геометрия 9-10» [16], но было очень сложно, так как определение вводилось в несколько шагов, было много вспомогательных понятий.
Наиболее целесообразно дать описание на основе наглядных представлений школьника. Проще и короче всего определить многогранник как тело, поверхность которого состоит из многоугольников (в конечном числе). При этом «тело» и «поверхность» можно понимать в наглядном смысле, как понимают обычно. Тело в отвлечении его от материальности – это часть пространства. Поэтому данное определение можно пересказать и так: многогранник – это часть пространства, ограниченная конечным числом многоугольников.
Например, у Погорелова А.В.: «Многогранник – это такое тело, поверхность которого состоит из конечного числа плоских многоугольников»; У Атанасяна Л.С.: «Многогранник – это поверхность, составленная из многоугольников и ограничивающая некоторое геометрическое тело».
При этом в согласии с наглядным представлением подразумевается следующее:
(1)Имеется в виду конечная часть пространства; конечная в смысле конечности её размеров, или, как принято говорить в математике, ограниченная. (Это оговаривается, поскольку можно считать, что многоугольники, ограничивающие конечную часть пространства, ограничивают вместе с нею и остальную его часть – бесконечную; во всяком случае, они тоже образуют его границу.)