Методика изучения многогранников в школьном курсе стереометрии
Рефераты >> Педагогика >> Методика изучения многогранников в школьном курсе стереометрии

Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более детального изучения отдельных разделов данной темы, а также пропедевтического введения многогранников в курсе математики 5-6 классов.

Литература

1. Автономова Т.В. Основные понятия и методы школьного курса геометрии: Книга для учителя./ Т.В. Автономова, Б.И. Аргунов. – М.: Просвещение, 1988.

2. Александров А.Д. Что такое многогранник? / А.Д. Александров// Математика в школе. – 1981. - № 1-2.

3. Александров А.Д. Геометрия для 10-11 классов: Учеб. Пособие для учащихся шк. и классов с углубл. изуч. математики / А.Д. Александров, А.Л. Вернер, В.И. Рыжик. - М.: Просвещение, 1992. – 464 с.

4. Атанасян Л.С. Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений. / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. - М.: Просвещение, 1998. – 207 с.

5. Бескин Л.Н. Стереометрия. / Л.Н. Бескин. - М.: Просвещение, 1971.

6. Болтянский В.Г. Выпуклые многоугольники и многогранники. / В.Г. Болтянский, И.М. Яглом // Математика в школе. – 1966. - № 3.

7. Болтянский В.Г. Элементарная геометрия: Кн. для учителя. / В.Г. Болтянский. - М.: Просвещение, 1985. – 320 с.

8. Веселовский С.Б. Дидактические материалы по геометрии для 11 класса. / С.Б. Веселовский, В.Д. Рябчинская. - М.: Просвещение, 1998. – 96 с.

9. Глаголев Н.А. Геометрия: Стереометрия. / Н.А. Глаголев, А.А. Глаголев. - М.: Учпедгиз, 1958.

10. Джордж Пойа. Математическое открытие. / Джордж Пойа. - М.: Наука, 1976.

11. Земляков А.Н. Геометрия в 10 классе: Метод. рекомендации к преподаванию курса геометрии по учеб. пособию А.В. Погорелова: Пособие для учителя. / А.Н. Земляков. - М.: Просвещение, 1986. – 208 с.

12. Зив Б.Г. Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений. / Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. - М.: Просвещение, 2000.

13. Зив Б.Г. Задачи к урокам геометрии. 7-11 классы. / Б.Г. Зив. – С.-Петербург, 1998.

14. Каченовский М.И. Математический практикум по моделированию. / М.И. Каченовский. - М.: Просвещение, 1959.

15. Киселев А.П. Геометрия: Учебник для 9-10 классов средней школы. / А.П. Киселев. - М.: Учпедгиз, 1956.

16. Клопский В.М. Геометрия: Учебное пособие для 9 и 10 классов средней школы. / В.М. Клопский, З.А. Скопец, М.И. Ягодовский / Под. ред. З.А. Скопеца. - М.: Просвещение, 1979.

17. Люстерник Л.А. Выпуклые фигуры и многогранники. / Л.А. Люстерник. - М.: Государственное издательство технико-теоретической литературы, 1956.

18. Методика преподавания геометрии в старших классах средней школы. / Под. ред. А.И. Фетисова. - М.: Просвещение, 1967.

19. Методика преподавания математики: Общая методика. / Составители: Р.С. Черкасов, А.А. Столяр. - М.: Просвещение, 1985.

20. Паповский В.М. Углубленное изучение геометрии в 10-11 классах: Метод. рекомендации к преподаванию курса геометрии в 10-11 кл. по учеб. пособию А.Д. Александрова, А.Л. Вернера, В.И. Рыжика: Кн. для учителя. / В.М. Паповский. - М.: Просвещение, 1993. – 223 с.

21. Петрова Е.С. Теория и методика обучения математике: Учеб.-метод. пособие для студ. мат. спец.: В 3 ч. Ч. 1. Общая методика. / Е.С. Петрова - Саратов: Изд-во Сарат. ун-та, 2004. – 84 с.

22. Погорелов А.В. Геометрия: Учеб. для 7-11 кл. сред. шк. / А.В. Погорелов. - М.: Просвещение, 1990. – 384 с.

23. Преподавание геометрии в 9-10 классах. / (сб. статей) сост. З.А. Скопец, Р.А. Хабиб. - М.: Просвещение, 1980.

24. Саакян С.М. Изучение темы «Многогранники» в курсе 10 класса. / С.М. Саакян, В.Ф. Бутузов. // Математика в школе. – 2000. - № 2.

25. Сверчевская И.А. Устные задачи по теме «Призма». / И.А. Сверчевская. // Математика в школе. – 2003. - № 6.

26. Сверчевская И.А. Устные задачи по теме «Пирамида». / И.А. Сверчевская. // Математика в школе. – 2003. - № 7.

27. Смирнова И.М. В мире многогранников: Кн. для учащихся. / И.М. Смирнова. – М.: Просвещение, 1995. – 144 с.

28. Смирнова И.М. Геометрия: Учеб. пособие для 10-11 кл. гуманит. Профиля. / И.М. Смирнова. – М.: Просвещение, 1997. – 159 с.

29. Смирнова И.М. Об определении понятия правильного многогранника. / И.М. Смирнова. // Математика в школе. – 1995. - № 3.

30. Смирнова И.М. Уроки стереометрии в гуманитарных классах. Изучение многогранников. / И.М. Смирнова. // Математика в школе. – 1994. - № 4.

31. Ходеева Т. Свойства многогранников. / Т. Ходеева. // Математика. – 2002. - № 11.

Приложение 1.

Урок повторения по теме «Многогранники» (10 класс).

Урок был проведен в 10 классе после изучения основных многогранников перед изучением правильных многогранников и симметрии.

Цели:

1) повторить основные виды многогранников (призмы и пирамиды), их частные виды;

2) повторить основные формулы для нахождения площади поверхности многогранников и его частных видов;

3) решить задачи разного уровня сложности по данной теме с применением уже известных знаний по многогранникам.

Оборудование: справочнаятаблица «Вычисление площадей и объемов многогранников», которая содержит 4 столбца: вид многогранника, чертеж, площадь боковой и полной поверхности, объем; готовые чертежи на отвороте доски для решения задач.

Ход урока:

1) Организационный момент.

2) Актуализация знаний.

Проводится фронтальная работа по таблице. Листочками на таблице закрыты названия многогранников, основные формулы и чертежи. Постепенно открываются чертежи, учащиеся по чертежу называют вид многогранника и основные формулы нахождения его полной и боковой поверхности. Колонка таблицы с формулами объема в работе не участвует, так как объем изучается в 11 классе. Таким образом, учащиеся вспоминают все необходимые факты для решения задач.

3)Решение задач.

На уроке предлагается решить две задачи по готовым чертежам (устное решение), две задачи письменно с построением чертежа и дополнительную задачу более сильным ученикам.

Задача 1. Дано: ABCDA1B1C1D1 – куб. Найдите: tg α.(рис.1).

Задача 2.Дано: DABC – правильная треугольная пирамида, DO(ABC), AB = 3·DO. Найдите: α.(рис2).

Задачи 1 и 2 имеют своей целью повторение некоторых фактов планиметрии и ранее изученных тем по стереометрии (например, перпендикулярность прямой и плоскости) и использование их в решении задач. При решении задачи, как правило, затруднения не возникают, но можно решение задачи 2 записать в тетрадь (что и было сделано на уроке).

Задача 3. В основании пирамиды DABC лежит прямоугольный треугольник ABC, C = 90°, A = 30°, BC = 10. Боковые ребра пирамиды равнонаклонены к плоскости основания. Высота пирамиды равна 5. Найдите ребра пирамиды и площадь боковой поверхности пирамиды.


Страница: