Линия Формализация и моделирование учебного курса Информатика
Рефераты >> Педагогика >> Линия Формализация и моделирование учебного курса Информатика

Согласно определению второй нормальной формы, все неклю­чевые поля должны функционально зависеть от полного ключа. В данной таблице лишь ДИАГНОЗ определяется одновременно фа­милией пациента и датой посещения. Остальные поля связаны лишь с фамилией, т. е. от даты посещения они не зависят. Для преобра­зования ко второй нормальной форме таблицу нужно разбить на две следующие:

ПОСЕЩЕНИЯ (ФАМИЛИЯ, ДАТА ПОСЕЩЕНИЯ, ДИАГНОЗ)

ПАЦИЕНТЫ (ФАМИЛИЯ, ДАТА_РОЖДЕНИЯ, УЧАСТОК, ВРАЧ)

В отношении ПОСЕЩЕНИЯ по-прежнему действует состав­ной ключ из двух полей, а в отношении ПАЦИЕНТЫ — одно ключевое поле ФАМИЛИЯ.

Во втором отношении имеется так называемая транзитивная зависимость. Она отображается следующим образом:

Значение поля ВРАЧ связано с фамилией пациента транзитивно через поле УЧАСТОК. В самом деле, всякий участковый врач приписан к своему участку и обслуживает больных, относя­щихся к данному участку.

Согласно определению третьей нормальной формы в отноше­нии не должно быть транзитивных зависимостей. Значит, требуется еще одно разбиение отношения ПАЦИЕНТЫ на два отношения.

В итоге получаем базу данных, состоящую из трех отношений:

ПОСЕЩЕНИЯ (ФАМИЛИЯ, ДАТА ПОСЕЩЕНИЯ, ДИАГНОЗ)

ПАЦИЕНТЫ (ФАМИЛИЯ, ДАТА_РОЖДЕНИЯ, УЧАСТОК)

ВРАЧИ (УЧАСТОК, ВРАЧ)

В третьем отношении ключом является номер участка, посколь­ку он повторяться не может. В то же время возможна ситуация, когда один врач обслуживает больше одного участка. Полученная структура БД удовлетворяет требованиям третьей нормальной формы: в таблицах все неключевые поля полностью функцио­нально зависят от своих ключей и отсутствуют транзитивные за­висимости.

Еще одним важным свойством полученной БД является то, что между тремя отношениями существует взаимосвязь через общие поля. Отношения ПОСЕЩЕНИЯ и ПАЦИЕНТЫ связаны общим полем ФАМИЛИЯ. Отношения ПАЦИЕНТЫ и ВРАЧИ связаны через поле УЧАСТОК. Для связанных таблиц существует еще одно понятие: тип связи. Возможны три варианта типа связей: «один — к—одному», «один—ко—многим», «многие — ко — многим». В нашем примере между связанными таблицами существуют связи типа «один — ко — многим», и схематически они отображаются так:

Смысл следующий: у каждого врача (на каждом участке) мно­го пациентов; каждый пациент посещает врача множество раз.

В приведенном примере показана процедура нормализации в строгом соответствии с теорией реляционных баз данных. Пони­мание смысла этой процедуры очень полезно для учителя.

На примере приведенной выше таб­лицы ПОЛИКЛИНИКА нужно увидеть три различных типа объектов, к которым относится данная информация: это паци­енты поликлиники, врачи и посещения пациентами врачей. Со­ответственно строятся три таблицы, содержащие атрибуты, от­носящиеся к этим трем типам объектов и связанные между со­бой через общие поля.

Информационное моделирование и электронные таблицы

Изучаемые вопросы:

• Что такое математическая модель.

• Понятия: компьютерная математическая модель, численный эксперимент.

• Пример реализации математической модели на электронной таблице.

Электронные таблицы являются удобной инструментальной средой для решения задач математического моделирования.

Что же такое математическая модель? Это описание состояния или поведения некоторой реальной системы (объекта, процесса) на языке математики, т.е. с помощью формул, уравнений и других математических соотношений. Характерная конфигурация всякой математической модели представлена на рис. 2.

Рис.2. Обобщенная структура математической модели

Здесь Х и У — некоторые количественные характеристики мо­делируемой системы.

Реализация математической модели — это применение опреде­ленного метода расчетов значений выходных параметров по зна­чениям входных параметров. Технология электронных таблиц — один из возможных методов реализации математической модели. Другими методами реализации математической модели может быть составление программ на языках программирования, применение математических пакетов (MathCAD, Математика и др.), примене­ние специализированных программных систем для моделирова­ния. Реализованные такими средствами математические модели будем называть компьютерными математическими моделями.

Цель создания компьютерной математической модели — про­ведение численного эксперимента, позволяющего исследовать мо­делируемую систему, спрогнозировать ее поведение, подобрать оптимальные параметры и пр.

Итак, характерные признаки компьютерной математической модели следующие:

• наличие реального объекта моделирования;

• наличие количественных характеристик объекта: входных и выходных параметров;

• наличие математической связи между входными и выходны­ми параметрами;

• реализация модели с помощью определенных компьютерных средств.

В качестве примера использования электронных таблиц для математического моделирования рассмотрим задачу о выборе ме­ста строительства железнодорожной станции из учебников.

Условие задачи. Пять населенных пунктов расположены вблизи прямолинейного участка железной дороги. Требуется выбрать ме­сто строительства железнодорожной станции, исходя из следую­щего критерия: расстояние от станции до самого удаленного пун­кта должно быть минимально возможным.

Для решения задачи выбирается система координат, в которой ось Х направлена по железнодорожной линии. В этой системе зада­ются координаты населенных пунктов. Допустим, что расстояние между самыми удаленными в направлении оси Х пунктами равно 10 км. Начало координат выберем так, чтобы Х-координата само­го левого пункта была равна 0. Тогда Х-координата самого правого пункта будет равна 10. Пусть координаты всех населенных пунктов в этой системе будут следующими:

1 - (0, 6); 2 - (2, 4); 3 - (5, -3); 4 - (7, 3); 5 - (10, 2).

В данном списке указан порядковый номер пункта и его коор­динаты.

Ниже приводится проект электронной таблицы (табл. 10.3), решающей эту задачу.

Таблица 3

 

А  

В  

С  

D  

Е  

F  

G  

Н  

I  

1  

     

Шаг=  

2  

км  

     

2  

 

Координаты  

 

Положе­ние  

станции  

     

3  

№  

X  

У  

0  

DЗ+$Е$1  

ЕЗ+$Е$1  

FЗ+$Е$1  

C3+$Е$1  

НЗ+$Е$1  

4  

1  

0  

6  

К(1,1)  

R(1,2)  

R(1,3)  

R(1,4)  

R(1,5)  

R(1,6)  

5  

2  

2  

4  

R(2,1)  

R(2,2)  

R(2,3)  

R(2,4)  

R(2,5)  

R(2,6)  

6  

3  

5  

-3  

R(3,1)  

R(3,2)  

R(3,3)  

R(3,4)  

R(3,5)  

R(3,6)  

7  

4  

7  

3  

R(4,1)  

R(4,2)  

R(4,3)  

R(4,4)  

R(4,5)  

R(4,6)  

8  

5  

10  

2  

R(5,1)  

R(5,2)  

R(5,3)  

R(5,4)  

R(5,5)  

R(5,6)  

9  

   

Макс.:  

Мах (D4.-D8)  

Мах (Е4.-Е8)  

Мах (F4.-F8)  

Мах (G4:G8)  

Мах (Н4:Н8)  

Мах (I4:I8)  

10

 

Миним.

расст.:

Min (D9:D9)

         


Страница: