Изучение метода координат в курсе геометрии основной школыРефераты >> Педагогика >> Изучение метода координат в курсе геометрии основной школы
Ø Закрепление: для закрепления используется ряд задач на применение данных формул.
1. Найдите длины векторов: а) ; b) [2: № 938]
2. Найдите медиану АМ треугольника АВС, вершины которого имеют координаты: А(0,1), В(1, -4), С(5,2). [2: № 942]
3. Вершина А параллелограмма ОАСВ лежит на положительной полуоси Ох, вершина В имеет координаты (b, c), а ОА=а. Найдите а)координаты вершины С; b)сторону АС и диагональ СО. [2: № 944].
Ø Домашнее задание № 939, 941 [2]
2 занятие: «Простейшие задачи в координатах». (урок – закрепление)
Общеобразовательная цель урока: показать, как «простейшие задачи» используются при решении более сложных и проверить усвоение знаний, полученных на прошлом уроке.
Содержание урока:
Ø В начале урока был проведен устный счет для проверки усвоения материала, разобранного на прошлом уроке.
Устный счет: записать координаты
●Середины отрезка ●Координаты вектора
· Длины вектора
· Расстояние между точками М и N.
Ø Решение задач.
1. Докажите, что треугольник АВС равнобедренный, и найдите его площадь, если А(0,1), В(1,-4), С(5,2).
2. Докажите, что четырехугольник MNPQ является параллелограммом, и найдите его диагонали, если N(6,1), P(7,4), Q(2,4), М(1,1). [2: № 950(а)]
Ø Самостоятельная работа.
I. Вариант |
1. Найдите координаты и длину вектора , если , , . |
2. Даны координаты вершин треугольника АВС А(-6,1), В(2,4), С(2,-2). Докажите, что треугольник АВС равнобедренный и найдите высоту проведенную из вершины А. |
Дополнительно для обоих вариантов: Даны координаты вершин треугольника АВС А(-4,3), В(2,7), С(8,-2). Доказать, что треугольник прямоугольный. |
II. Вариант |
1. Найдите координаты и длину вектора , если , , . |
2. Дано А(-6,1), В(0,5), С(-6,4), Р(0,-8). Докажите, что АВСР прямоугольник и найдите координату точки пересечения его диагоналей. |
Ø Домашнее задание №945, 948(а)
II. Факультатив.
Для проведения факультатива предлагается ряд более сложных нестандартных задач, при решении которых используется метод координат.
Задача 1. Два предприятия А и В производят продукцию с одной и той же ценой m за одно изделие. Однако автопарк, обслуживающий предприятие А, оснащен более современными и более мощными грузовыми автомобилями. В результате транспортные расходы на перевозку одного изделия составляют для предприятия А 10 р. на 1 км, а для предприятия В 20 р. на 1 км. Расстояние между предприятиями 300 км. Как территориально должен быть расположен рынок сбыта между двумя предприятиями для того, чтобы расходы потребителей при покупке изделий были минимальными.
Решение:
Для решения данной задачи воспользуемся методом координат. Систему координат выберем так, чтобы ось Ох проходила через пункты А и В, а ось Оу через точку А. Пусть Р произвольная точка, s1 и s2 расстояния от точки до предприятий А и В (рис.17). Тогда А(0, 0), В(300, 0), Р(х, у).
При доставке груза из пункта А расходы равны m+10s1. При доставке груза из пункта В расходы равны m+20s2. Если для пункта Р выгоднее доставлять груз с предприятия А, то m+10s1< m+20s2, откуда s1<2s2, в обратном случае получим s1>2s2.
Таким образом, границей области для каждой точки, до которой расходы на перевозку груза из пунктов А и В равны, будет множество точек плоскости, удовлетворяющих уравнению
s1=2s2 (1)
Выразим s1 и 2s2 через координаты:
, .
Имея в виду (1), получим .
Это и есть уравнение окружности. Следовательно, для всех пунктов, попадающих во внутреннюю область круга, выгоднее привозить груз из пункта В, а для всех пунктов, попадающих во внешнюю часть круга, - из пункта А.
Задача 2. На плоскости даны точки А и В; найти геометрическое место точек М, удаленных от А в двое больше, чем от В.
Решение:
Выберем систему координат на плоскости так, чтобы начало координат попало в точку А, а положительная полуось абсцисс пошла по АВ. За единицу масштаба возьмем отрезок АВ. Точка А будет иметь координаты (0,0), точка В координаты (1,0). Координаты точки М обозначим через (х,у). Условие записывается в координатах так:
.
Мы получили уравнение искомого геометрического места точек. Чтобы понять, какое множество описывается этим уравнением, мы преобразуем его так, чтобы оно приняло знакомый нам вид. Возведя обе засти в квадрат, раскрывая скобки и приводя подобные члены, получаем равенство: Зх2-8х+4+Зу2=0.
Это равенство можно переписать так: