Изучение метода координат в курсе геометрии основной школы
Рефераты >> Педагогика >> Изучение метода координат в курсе геометрии основной школы

1) задачи на построение точки по ее координатам;

2) задачи на нахождение координат заданных точек;

3) задачи на вычисление расстояния между точками, заданными координатами;

4) задачи на оптимальный выбор системы координат;

5) задачи на составление уравнения фигуры по ее характеристическому свойству;

6) задачи на определение фигуры по ее уравнению;

7) задачи на преобразование алгебраических равенств;

Приведем примеры таких задач.

I. Построение точек на плоскости.

С координатной прямой, а затем и с координатной плоскостью учащиеся знакомятся в 5-6 классах при изучении математического материала. При этом удобно использовать мультимедийные презентации, которые позволяют в динамике излагать необходимый материал, использовать всевозможные иллюстрации и звуковые эффекты, тем самым, заинтересовывая учащихся и являясь хорошим наглядным средством. Одним из примеров является презентация «Метод координат», опирающаяся на учебник [7]. (см. приложение 1). Приведем несколько примеров задач, которые можно использовать при изучении координатной плоскости. Эти задачи могут быть использованы:

§ для оттачивания навыков построения точек по их координатам со всем классом;

§ для дополнительных заданий отстающим ученикам;

§ для развития интереса к изучаемой теме.

1) На координатной плоскости постройте точки А(7,2), B(-2,1), C(0,2).

2) Отметьте на плоскости несколько точек. Начертите произвольную систему координат и найдите в ней координаты заданных точек.

3) Постройте фигуры по координатам их узловых точек. Указание: узловыми будем называть точки, служащие концами отрезков, образующих фигуры. Точки, координаты которых записаны подряд через запятую, соединяйте последовательно друг с другом. Если же координаты разделяются знаком «;», то соответствующие точки не следует соединять. Они нужны для изображения вспомогательных элементов.

А) Камбала (Рис. 4)

(3,7), (1,5), (2,4), (4,3),

(5,2), (6,2), (8,4), (8,-1),

(6,0), (0,-3),(2,-6),(-2,-3),

(-4,-2),(-5,-1),(-6,1),(-4,1);

(-6,1), (-6,2), (-3,5), (3,7);

(-4,-2),(-2,0),(-2,2),(-3,5);(-3,3).

Б)Найдите координаты выделенных на рисунке точек, двигаясь по часовой стрелке от самой жирной точки. (Рис. 5 и 6)

II.Задачи на выбор системы координат

Выбор системы координат имеет очень важное значение при применении метода координат.

Для примера возьмем задачу, которая рассмотрена в учебнике [2] «Середина гипотенузы прямоугольного треугольника равноудалена от его вершин».

Первым шагом при применении метода координат является такой выбор осей и системы координат, при котором алгебраические выкладки становятся более простыми. Для данной задачи удачный выбор системы координат показан на рисунке 7. Таким образом, начало координат помещаем в точку А, а оси проводим через точки В и С так, чтобы эти точки лежали на положительных лучах осей. Следовательно, В(а,0) и С(0,b). Поэтому по формуле середины отрезка D(). Теперь , .

Поэтому AD=BD. А так как по определению середины отрезка BC=CD, то теорема доказана.

Можно выбрать систему координат и по-другому (рис.8, рис.9). Если выбрать оси совсем случайно, то легкую задачу можно превратить в очень трудную. Чтобы начать доказательство исходя из рисунка 10, нужно найти способ, позволяющий выразить алгебраически, что треугольник ABC имеет при вершине А прямой угол. Сделать это можно, но будет это не очень просто.

Підпис: C(c,d)

Поэтому необходимо вырабатывать у учащихся, начиная с 6 класса, представления о возможности произвольного выбора системы координат. Эту работу целесообразно вести в процессе решения задач. В целях пропедевтической работы можно рекомендовать в 6 классе задачи из учебника на нахождение координат точек по рисунку, разнообразя их с помощью изменения направления осей и начала координат. (см. приложение1)

1. Длина отрезка АВ равна 5см. а)Выберите систему координат, в которой можно было бы наиболее просто определить координаты концов отрезка. б)Выберите систему координат так, чтобы координаты концов отрезка были бы: А (-2.5,0), В(2.5,0).

2. Постройте квадрат ABCD со стороной 2 см; отметьте точку М- центр квадрата. Поместите начало координат последовательно в точки A, B, C, D и выберите направление осей координат так, чтобы точка М в каждой системе координат имела координаты (1;1). За единичный примите отрезок длиной 1 см.

3. Треугольник ABC равносторонний (длина стороны равна 6 см.). Выберите систему координат так, чтобы можно проще было бы определить координаты его вершин.

III. Расстояние между точками

1) Точка М(а,с) находится от начала координат и точки А(4,0) соответственно на расстояниях 3 и 4 см. Определите координаты точки М.

2) Дан прямоугольник ABCD (АВ=2 см., ВС=4 см.). Как выбрать систему координат, чтобы его вершины имели координаты А(-1,-2), В(-1,2), С(1,2), D(l,-2)?

3) Длины сторон треугольника ABC равны 3, 4 и 5 см. Выберете систему координат и определите в ней координаты вершин треугольника ABC.

4) Вершины четырехугольника ABCD имеют следующие координаты: А(-3,1), В(3,6), С(2,2) и D(-4,3). Установите вид четырехугольника.

IV. Составление уравнения фигур

Это умение является одним из основных умений, которые необходимы при применении метода координат к решению задач.

1) Изобразите систему координат. Отметьте на оси Ох точки А и В. Запишите соотношения, которым удовлетворяют координаты точек, принадлежащих: а)отрезку АВ; б)лучу АВ; в)лучу ВА;

2) Запишите уравнение прямой, содержащей начало координат и точку А(2,5).

3) Запишите уравнение прямой, содержащей точки А(2,7)и В(1,3).

4) Изобразите на координатной плоскости произвольную прямую и найдите ее уравнение.

5) Запишите соотношения, которым удовлетворяю координаты точек прямоугольника с вершинами А(2,3), В(2,5), С(4,5), D(4,3).


Страница: