Изучение метода координат в курсе геометрии основной школы
Рефераты >> Педагогика >> Изучение метода координат в курсе геометрии основной школы

6) Что представляют собой множества точек плоскости, координаты которых удовлетворяют неравенствам: а)х≤3; b)-5≤х≤0; c)x>1; d)x<-2; e)≥2; f)≥0?

7) Какую фигуру образует множество точек, координаты которых удовлетворяют системе неравенств 2≤x≤5 и 1≤y≤3?

8) Постройте точки, симметричные точкам А(2,-3) , В(5,0), С (0,7) относительно: а) оси Ох; б) оси Оу; в)биссектрисы I и III координатных углов. Запишите эти координаты.

9) Установите, относительно какой из координатных осей симметричны точки А(1,2), В (-7,2).

10) Точки А(5,…), В(…,2) симметричны относительно оси Ох. Запишите пропущенные координаты.

11) Постройте образы точек А(1,5), В(-2,3), С(3,0) при параллельном переносе а)О(0,0)→К(3,0); 6)0(0,0)→М(2,3). Запишите их координаты.

12) С помощью какого параллельного переноса можно отобразить точку М(-3,4) в точку M1(2,4)?

13) Найдите на прямых у=-Зх+1 и у=2х+3 точки, симметричные относительно оси Ох.

14) Запишите уравнение прямой, на которую отображается прямая у=4х-3 вектором с координатами (3,4).

15) На прямых у=Зх+2 и у=-5х+5 найдите такие точки, которые находятся одна от другой на расстоянии 5 см, и принадлежат прямой, параллельной оси Ох.

2.3 Виды задач, решаемых методомкоординат

Применяя метод координат, можно решать задачи двух видов.

1. Пользуясь координатами можно истолковать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функции первый пример такого применения метода координат.

2. Задавая фигуры уравнениями и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Например, можно выразить через координаты основную геометрическую величину - расстояние между точками.

В связи с усилением роли координатного метода в изучении геометрии особенно актуальной становиться проблема его формирования. Наиболее распространенными среди планиметрических задач, решаемых координатным методом, являются задачи следующих 2 видов: 1) на обоснование зависимостей между элементами фигур, особенно между длинами этих элементов; 2) на нахождение множества точек, удовлетворяющих определенным свойствам.

Примером задач первого вида может служить следующая:

«В треугольнике ABC, AB=c, AC=b, BC=a, BD - медиана.

Доказать, что »

Задача: «Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная» - является примером задач второго вида.

Решения этих задач были разобраны выше.

Несмотря на недостатки метода координат такие как наличие большого количества дополнительных формул, требующих запоминания, и отсутствие предпосылок развития творческих способностей учащихся, некоторые виды задач трудно решить без применения данного метода. Поэтому изучение метода координат необходимо, однако более детальное знакомство с этим методом целесообразно проводить на факультативных занятиях. Далее приведем ряд задач для факультативов.

Пример 1. Докажите, что сумма квадратов расстояний от точки, взятой на диаметре окружности, до концов любой из параллельных ему хорд постоянна.

Решение:

Введем прямоугольную систему координат с началом в центре окружности. Пусть хорда МР параллельна оси Ох, а точка А принадлежит диаметру (рис. 11). Обозначим расстояние ОА через а, а расстояние от точки Р до оси Ох через b. Тогда точка А имеет координаты (а, 0). Точки Р и М принадлежат окружности с центром в начале координат и радиусом равным 1, следовательно их координаты удовлетворяют уравнению данной окружности . Используя это уравнение находим координаты точек Р() и М(). Необходимо доказать, что АМ2+АР2 не зависит от переменной b. Найдем АМ2 и АР2 используя формулу нахождения расстояния между двумя точками по их координатам: . Они соответственно равны и , а их сумма после приведения подобных равна 2а2+2. Это число не зависит от переменной b, что и требовалось доказать.

Пример 2. Доказать, что сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей. (Теорема Эйлера)

Решение: Введем прямоугольную систему координат как показано на рисунке 12.

Пусть точки А, В, С и D имеют координаты (0,0), (d,0), (c,d) и (0,d) соответственно. Следовательно, координаты точек L и P есть () и (). Найдем квадраты длин отрезков, с помощью формулы нахождения расстояния между точками по их координатам.

AD2=; BC2=; DC2=; AB2=;

AC2=; BD2=; LP2=.

Запишем выражение, которое необходимо доказать, используя найденные нами значения.

AD2+BC2+DC2+AB2=AC2+BD2+4LP2

+++=++4

Раскроем скобки, приведем подобные и получим верное равенство 0=0. Значит, сумма квадратов длин сторон четырехугольника равна сумме квадратов длин его диагоналей, сложенной с учетверенным квадратом расстояния между серединами диагоналей.

Пример 3. Диаметры AB и CD окружности перпендикулярны. Хорда ЕА пересекает диаметр СD в точке К, хорда ЕС пересекает диаметр АВ в точке L. Докажите, что если СК:KD так же как 2:1, то AL:LB так же как 3:1.


Страница: