Изучение метода координат в курсе геометрии основной школыРефераты >> Педагогика >> Изучение метода координат в курсе геометрии основной школы
На третьем этапе осуществляется перевод языка уравнения на геометрический язык. Полученное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние , т.е. серединного перпендикуляра к отрезку АВ.
2.2 Задачи, обучающие координатному методу
Для разработки методики формирования умения применять координатный метод важно выявить требования, которые предъявляет логическая структура решения задач мышлению решающего. Координатный метод предусматривает наличие у обучающихся умений и навыков, способствующих применению данного метода на практике. Проанализируем решение нескольких задач. В процессе этого анализа выделим умения, являющиеся компонентами умения использовать координатный метод при решении задач. Знание компонентов этого умения позволит осуществить его поэлементное формирование.
Задача №1 . В треугольнике ABC: AC=b, AB=c, ВС=а, BD - медиана. Докажите, что .
Выберем систему координат так, чтобы точка А служила началом координат, а осью Ох - прямая АС (рис. 2).
(умение оптимально выбирать систему координат, т. е. так, чтобы наиболее просто находить координаты данных точек).
В выбранной системе координат точки А, С и D имеют следующие координаты: А(0,0), D(,0) и С(b,0)
(умение вычислять координаты заданных точек). Обозначим координаты точки В через х и у. Тогда используя формулу для нахождения расстояний между двумя точками, заданными своими координатами, получаем:
х2+у2=с2 , (x-b)2+y2=a2 (1)
(умение находить расстояние между двумя точками, заданными координатами)
По той же формуле . (2)
Используя формулы (1) находим х и у.
Они равны:
; .
Далее, подставляя х и у в формулу (2), находим .
.
(умение выполнять преобразования алгебраических выражений)
Задача №2. Найти множество точек, для каждой из которых разность квадратов расстояний от двух данных точек есть величина постоянная.
Обозначим данные точки через А и В. Выберем систему координат так, чтобы ось Ох совпадала с прямой АВ, а началом координат служила точка А.
(умение оптимально выбирать систему координат).
Предположим АВ=а, тогда в выбранной системе координат А(0,0), В(а,0).
(умение находить координаты заданных точек)
Точка М(х,у) принадлежит искомому множеству тогда только тогда, когда AM2-MB2=b2 где b - постоянная величина
(умение переводить геометрический язык на аналитический, составлять уравнения фигур).
Используя формулу расстояний между двумя точками, получаем:
, ,
(умение вычислять расстояние между точками, заданными координатами), или . Данное уравнение является уравнением прямой, параллельной оси Оу и отстоящей от точки А на расстояние .
(умение видеть за уравнением конкретный геометрический образ)
Нетрудно видеть, что и для решения этой задачи необходимо овладение перечисленными выше умениями. Кроме того, для решения приведенной задачи, а также и других задач важно умение «видеть за уравнением» конкретный геометрический образ, которое является обратным к умению составлять уравнения конкретных фигур.
Выделенные умения являются основой при решении и более сложных задач.
Задача №3. В трапеции меньшая диагональ перпендикулярна основаниям. Найти большую диагональ, если сумма противоположных углов равна , а основания равны а и b.
Направим оси координат по меньшей диагонали и одному из оснований (рис. 3).
(умение оптимально выбирать систему координат).
Тогда точка А имеет координаты (0,0), точка В - (а,0), точка С - (0,c), точка D - (b,c).
(умение находить координаты заданных точек)
Пусть и острые углы в трапеции АВСD, тогда их сумма равна . Для вычисления длины большей диагонали BD надо найти значение с. Его можно вычислить 2 способами. Первый - из прямоугольного треугольника АВС по формуле находим . Второй способ из прямоугольного треугольника ACD: . Отсюда получили, что
(1)
Из равенства (1) находим отношение : оно равно -, так как . Выразим . Он равен , исходя из этого, пользуясь зависимостью (1), получаем .
(умение выразить недостающие координаты через уже известные величины)
Далее воспользовавшись координатной формулой расстояния между двумя точками, найдем длину BD.
(умение вычислять расстояние между точками, заданными координатами)
Она равна .
Итак, компонентами умения применять координатный метод в конкретных ситуациях являются следующие умения:
1. переводить геометрический язык на аналитический для одного типа задач и с аналитического на геометрический для другого;
2. стоить точку по заданным координатам;
3. находить координаты заданных точек;
4. вычислять расстояние между точками, заданными координатами;
5. оптимально выбирать систему координат;
6. составлять уравнения заданных фигур;
7. видеть за уравнением конкретный геометрический образ;
8. выполнять преобразование алгебраических соотношений.
Данные умения можно отработать на примере следующих задач, формирующих координатный метод: