Задачи в школьном курсе математикиРефераты >> Педагогика >> Задачи в школьном курсе математики
ЗАДАЧА. Доказать, что в прямоугольном треугольнике биссектриса угла делит пополам угол между медианой и высотой, проведенными к гипотенузе (см. рис.).
При использовании метода анализа постоянно отыскивается ответ на вопрос, что достаточно найти, доказать, чтобы ответить на вопрос. Чтобы доказать равенство углов ОВК и КВМ, достаточно доказать равенство углов АВМ и СВО. А так как углы МВА и ВАМ равны, то для доказательства равенства углов СВО и МВА достаточно доказать равенство углов СВО и CAB. А доказать равенство этих углов уже не составит труда.
Достаточно универсальной является и другая эвристика - переформулирование. Суть этого эвристического приема заключается в том, что условия или требования, а возможно, то и другое одновременно, заменяются на новые, эквивалентные имеющимся, но позволяющие упростить поиск решения. В простейших случаях переформулировка - это замена термина его содержанием. Рассмотрим на примере эту эвристику.
ЗАДАЧА. Доказать, что середины оснований трапеции, точка пересечения диагоналей и продолжений боковых сторон лежат на одной прямой.
Оказывается, что поиск решения задачи облегчается, если задачу сформулировать иначе: доказать, что прямая, проходящая через точку пересечения диагоналей трапеции и точку пересечения продолжений боковых сторон, делит основания трапеции пополам. Задача при этом остается той же, но новая формулировка подсказывает определенный метод решения.
Иногда при поиске решения трудной задачи помогает аналогия с использованием методов решения уже решенной задачи. Например, предстоит решить следующую задачу.
ЗАДАЧА. Через некоторую точку, расположенную вне окружности, проведена к этой окружности секущая. Доказать, что произведение отрезков АВ и АС (см. рис.) есть величина постоянная для данной окружности и данной точки.
Если к этому моменту оказывается уже решенной задача: «Доказать, что произведение отрезков хорд, проходящих через данную точку внутри данной окружности, есть величина постоянная», то можно перенести метод ее решения на новую задачу. А именно, вначале целесообразно переформулировать требование: проведя через точку А еще одну секущую, докажем, что АС·АВ = AE·AD. Чтобы доказать это равенство, преобразуем его в пропорцию , которая наталкивает на поиск подобных треугольников с названными сторонами.
При решении ряда задач может помочь метод суперпозиции - решение задач в частных случаях. Причем рассматриваемые частные случаи должны полностью исчерпывать все возможные случаи. Например, требуется доказать неравенство: .
Найти общее решение данной задачи можно, но довольно трудно, а решить ее в трех случаях, когда а < 0, и а >1, не представляет труда. Например, если а<0, то выражение слева можно представить как , которое принимает лишь положительные значения. Если , то его же можно представить как , и тогда очевидно, что оно принимает положительные значения в рассматриваемом промежутке. Если а>1, то выражение можно представить как . Рассмотренные три случая полностью исчерпывают все возможные значения параметра а.
Метод суперпозиции не следует смешивать еще с одной эвристикой - рассмотрением частных случаев, которые не исчерпывают всех возможных случаев. Тогда вывод, полученный по индукции, требует доказательства.
Иногда для поиска идеи решения задачи полезно рассмотреть какой-нибудь крайний, предельный случай. Эта эвристика так и называется «предельный случай». Рассмотрим задачу: доказать, что сумма расстояний от любой точки внутри правильного тетраэдра до его граней есть величина постоянная.
Чтобы доказать требование, желательно предварительно выяснить, что это за величина. Для этого и используется предельный случай. Возьмем в качестве произвольной точки одну из вершин тетраэдра. Тогда легко обнаружить искомую величину. Сумма расстояний от любой точки внутри тетраэдра до всех его граней равна высоте тетраэдра. С помощью предельного случая производится уточнение требования, его переформулировка, а для поиска пути доказательства могут быть привлечены другие эвристики.
Довольно часто при поиске решения задач может помочь еще одна эвристика - прием обобщения, когда вместо имеющейся задачи решается другая, более общая по отношению к данной.
Например, требуется определить, какое число больше: 19971998 или 19981997.
Преобразование разности этих выражений к успеху не приводит. Но если выражения прологарифмировать: 1998 lg 1997 и 1997 lg 1998, то вместо исходных можно сравнивать выражения и , тогда оказывается, что сравнивать надо два значения функции , т. е. требуется решить вопрос, какой характер монотонности имеет функция, а это стандартная задача.
Очень важной эвристикой, используемой при решении большого числа задач, является выделение подзадач, решение которых не составляет труда, внутри основной задачи. Тем самым упрощается структура основной задачи.
ЗАДАЧА. Из двух пунктов, расстояние между которыми 100 км, выехали одновременно навстречу друг другу два велосипедиста. Скорость одного из них была 15 км/ч, а другого-10 км/ч. Вместе с первым велосипедистом выбежала собака со скоростью 20 км/ч. Встретив второго велосипедиста, собака повернула обратно и побежала навстречу первому велосипедисту. Встретив первого велосипедиста, она снова повернула. Собака бегала между велосипедистами до тех пор, пока велосипедисты встретились. Сколько километров пробежала собака?
Если решение задачи начинать с рассмотрения движения собаки и второго велосипедиста, то перед решающим встает необходимость рассматривать последовательность встречных движений, что может оказаться очень непростым делом. А если внутри основной задачи выделить в качестве элементарной подзадачи движение велосипедистов навстречу друг другу, в которой требуется определить время до их встречи, то сразу вырисовывается и вторая элементарная подзадача - движение собаки, скорость и время которой известны, а маршрут движения - безразличен.
Прием выделения подзадач внутри основной задачи применяется при решении подавляющего большинства задач. Этот прием используется, в частности, когда решается любая задача на описанные и вписанные в сферу многогранники, когда требуется, например, доказать, что центр сферы, вписанной в правильную пирамиду, лежит на высоте пирамиды; что основание перпендикуляра, опущенного из любой точки высоты пирамиды на боковую грань, попадает на апофему боковой грани. Не зная, как решить задачу, решающий часто проводит рассуждения по схеме: «По данным задачи я могу найти то-то и то-то, а что это мне дает для решения основной задачи?»