Ферменты дереворазрушающих грибов
Целлюлолитические ферменты, осуществляющие биодеградацию целлюлозы, самого распространенного биополимера на Земле, занимают центральное место в круговороте органического углерода [2]. Основными микроорганизмами, продуцирующими целлюлазы, являются грибы возбудители мягкой и бурой гнили, а также различные виды аэробных и анаэробных бактерий. История исследования целлюлаз насчитывает уже более 50 лет, В течение этого периода важнейшим свойством, характеризующим целлюлазный комплекс, считалась его способность к глубокой деструкции целлюлозосодержащих субстратов (так называемая «сахаролитическая» активность). Поэтому исследования, в основном, были направлены на поиск ферментных препаратов и их продуцентов, эффективно осуществляющих гидролиз целлюлозы до глюкозы [19]. Целлюлазы этих препаратов, как правило, проявляли максимальную активность в кислой среде (рН 4-5) [14], но различались по субстратной специфичности, адсорбционной способности и термостабильности. Целлюлазы находят все более широкое применение в текстильной, целлюлозно-бумажной, пищевой и других отраслях промышленности [6]. В последнее время усилия исследователей направлены на поиск целлюлолитических ферментов, способных мягко воздействовать на поверхность целлюлозного субстрата, не приводя к глубокой деструкции целлюлозной матрицы [4]. Обнаружение ферментов с такой (тополитическая активность) активностью открыло новые возможности их применения. Например, для депигментации джинсовых изделий с целью придания им более привлекательных потребительских свойств (альтернатива традиционным химическим способам «варки», а также обработке пемзой); для биополировки текстильных материалов с целью удаления микродефектов и ворса; как компонента моющих средств и т, д. В связи с этим наиболее перспективными для использования являются так называемые «нейтральные» целлюлазы, демонстрирующие высокую активность [20].
Разрушение материала клеточных стенок под действием ферментов грибов наблюдается по появлению зон растворения вокруг гиф. Зона растворения постепенно увеличивается и гифа проникает сквозь внутренний слой клеточной стенки [4].
Всего выделяют 3 основных типа целлюлаз, которые катализируют различные типы реакции:
а) Эндоцеллюлаза разрывает внутренние связи, для того чтобы нарушить кристаллическую структуру целлюлозы. В результате образуются отдельные полисахаридные цепи целлюлозы.
б) Экзоцеллюлаза отщепляет от концов 2 или 4 остатка, в результате образуются тетрасахара или дисахариды, состоящие из целлобиозы. Выделяют два основных типа экзоцеллюлаз (или целлобиозодегидрогеназ). Первый тип отщепляет от редуцирующего конца. Второй тип от нередуцирующего конца целлюлозы.
в) Целлобиоза или бета-глюкозидаза гидролизуют продукты экзоцеллюлаз до моносахаров.
Оксидативные целлюлазы деполимеризуют целлюлозу радикальными реакциями. В случаи акцептора может выступать целлобиоза [21].
Целлюлитический комплекс грибов включает две большие группы:
1. Гидролазы, осуществляющие расщепление структурных полисахаридов клеточной стенки древесины, в том числе большая группа гликозилгидролаз, эндо- и экзополигалактуроназа и целый ряд других гликаназ и глюкозидаз, отщепляющих боковые остатки в основной цепи гемицеллюлаз и пектиназ. В это группу также включают некоторые эстеразы, помогающие гликозилгидролазам в расщеплении основных цепей структурных полисахаридов клеточной стенки (пектин-метилэстераза, ферулоилэстераза, ацетилксиланэстераза). Под гликозилгидролазой понимают ряд ферментов, такие как эндо- и экзоцеллюлаза, гемицеллюлаза, эндо- и экзоксиланазы, эндо- и экзоманназы, β-глюконаза.
2. Оксидоредуктазы, действующие на углеводные компоненты древесины. К ним относят глюкозооксидаза, галактозооксидаза, целлобиозодегидрогеназа [8].
Эндоглюканаза гидролизует β-1,4 связи между соседними остатками глюкозы в плотно упакованных областях целлюлозы, образуя разрывы в середине цепи.
Экзоглюканаза расщепляет разорванные целлюлозные цепи с нередуцирующих концов с образованием глюкозы, целлобиозы или целлотриозы.
Целлобиогидролаза отщепляет фрагмент из 10 остатков и более числа остатков глюкозы с нередуцирующих концов молекулы целлюлозы.
Целлобиоза или β-глюконаза катализирует превращение целлобиозы и целлотриозы в глюкозу [1].
Особый интерес среди внеклеточных ферментов представляют целлобиозодегидрогеназы. Это оксидаза, специфичная к окислению восстанавливающих сахаров 1,4-β-гликозидной связью (целлобиоза и целлоолигосахариды, маннобиоза и манноолигосахариды, лактоза), но не действующая на моносахариды и их олигомеры с α-глюкозидной связью, найдена (наряду с эндоцеллюлазами) во всех основных группах ксилотрофов, вызывающие мягкие, деструктивные и коррозионные гнили [4].
Фермент окисляет восстанавливающее звено подходящего ди- или олигосахарида до лактона, одновременно восстанавливая двух или одноэлектронный акцептор. Акцепторами могут быть хиноны и феноксирадикалы, образуемые лакказами или неспецифическими пероксидазами, либо ионы трехвалентного железа или двухвалентной меди. Принципиально возможно и каталитическое восстановление кислорода до перекиси водорода, хотя он является плохим субстратом целлобиозодегидрогеназы [4].
Ферментные системы мягких гнилей полностью разлагают упорядоченную целлюлозу в отсутствии кислорода, чем принципиально отличаются от ферментов возбудителей белой гнили, скорость действия которых на целлюлозу заметно снижалось при удалении растворенного кислорода. Обнаружение внеклеточной целлобиозодегидрогеназы у представителей термофильного микромицета Myceliophthora thermophila предположили о возможности двух механизмов гидролазного и в присутствии ионов железа оксидазного, через свободнорадикальный процесс, запускаемый реактивом Фентона (Fe +2 +H2O2) в кислой среде [8].
Целлобиозодегидрогеназа имеет большое сродство к целлюлозе, может действовать на удаленном расстоянии, в глубине целлюлозных волокон, где образуется ее основной субстрат – целлобиоза [8].
4. Практическое применение дереворазрушающих грибов и их
ферментов в биотехнологии
гриб разрушение древесина фермент биотехнология
Люди давно и широко используют грибы как продукт питания. Грибы богаты белками: в их сухом веществе 20-30% приходится на долю чистого белка. В них содержатся жиры, минеральные вещества, микроэлементы. К последним относят железо, кальций, цинк, йод, калий, фосфор. В сыроежках например, содержится 3,2% фосфора (от общего веса золы), в свинушке толстой – 9,3, в свинушке тонкой – 3,9%. При этом шляпки содержат больше фосфора, чем ножки. В промышленных масштабах выращивают около 10 видов грибов, среди них такие как вешенка устричная и шиитаки. Грибы богаты витаминами и каратинойдамим, содержат немного жиров и углеводов. Некоторые виды используются как продуценты биологически активных веществ, антибиотиков, ферментов [15, 25].
Протеолитические ферменты базидиомицетов давно и успешно применяются в пищевой промышленности. Например, из культур Irpex lacteus, Fomitopsis pinicola и Russula decolorans выделены, детально изучены и используются в сыроделии протеиназы, заменяющие сычужный фермент. Также является перспективным использование протеиназы плодовых тел вешенки обыкновенной [22]. Сыроежка красная содержит фермент, способствующий свертыванию молока. Ленинградские ученые и вологодские специалисты создали ферментный препарат из сыроежки для изготовления высококачественных сортов сыра, назвав его руссулин – от ее латинского родового названия Руссула. Он заменяет сычужный фермент в производстве творога и сыров. Активность руссулина очень высока: полграмма за полчаса створаживает 100 л молока [2, 23].