Ферменты дереворазрушающих грибов
Лигнинпероксидаза (диарилпропаноксигеназа, Н202-зависимая оксигеназа, лигниназа, КФ 1.11.1.14) – гемсодержащий фермент с молекулярной массой 39-42 кДа, являющийся донором Н202. Катализирует различные реакции одноэлектронного окисления ароматических соединений (предпочтительно нефенольных) за счет кислорода перекиси водорода, с восстановлением ее до воды. К ним относят:
1. Сα−Сβ – разрыв пропильной группы лигнина и модельных соединений.
2. Гидроксилирование бензильных метиленовых групп.
3. Окисление бензиловых спиртов до соответствующих альдегидов и кетонов.
4. Окисление фенолов и расщепление ароматического кольца в нефенольных модельных соединениях лигнина [16, 17].
Полученный арильный катион-радикал спонтанно разрушает различные связи в зависимости от структуры и наличия реактанов. Лигнинпероксидаза способна окислять и фенольные соединения. При этом образуются в результате окисления ферментов нефенольных соединений. Выделено около 15 изоформ данного фермента [16]. Лигнинпероксидаза обнаружена лишь у немногих базидиальных грибов: Phanerochaete chrysosporium, Trametes versicolor, Trametes hirsuta, Panus tigrinus, Coriolopsis occidentalis [13].
Мn-зависимая пероксидаза – гемсодержащий фермент (КФ 1.11.1.3), участвующий в деполяризации синтетического лигнина [16]. Она окисляет фенольные соединения в присутствии перекиси водорода. Проявляет активность в среде, содержащей Мn, имеет молекулярную массу 46 кДа [8]. Впервые выделена из культуральной жидкости гриба Ph. chrysosporium. Принцип функционирования фермента заключается в окисление Мn2+ до Мn3+ с использованием пероксида водорода в качестве окислителя. Активность фермента стимулируется простыми органическими кислотами, которые стабилизируют ион Мn3+. В результате взаимодействия последнего с кислотами образуется хелат, обладающий окислительными свойствами [16]. Регенерация Мn осуществляется сопряженной реакцией разложения перекиси водорода. При отсутствии в среде Н202 Мn-зависимая пероксидаза способна продуцировать пероксид водорода. Мn-зависимая пероксидаза отмечена у таких грибов как Trametes versicolor, Phlebia radiate, Dischomitus squalens и др. [13].
П. Флавинсодержащие ферменты,осуществляющие, в основном двухэлектронное восстановление молекулы кислорода до перекиси водорода и одновременно двухэлектронное окисление ОН-группы, соответствующих субстратов, до карбонильных групп. Среди них – глюкозооксидазы, пиранозо-2-оксидазы, метанол-оксидазы, арилалкогольоксидазы [13].
Глюкозооксидаза – флавинсодержащая оксидаза с молекулярной массой 80 кДа, катализирующая окисление глюкозы, восстанавливая при этом кислород до перекиси водорода. Глюкозооксидаза выявлена у грибов Panus tigrinus, P. Chrysosporium [8].
Пираноза-2-оксидаза ароматических спиртов, катализирует окисление низших первичных и ароматических спиртов до соответствующих альдегидов и пероксида водорода [13].
Арилалкогольоксидаза (вератрил-алкоголь оксидаза), внеклеточная флавин-оксидаза с молекулярной массой 72,5-78 кДа, катализирует окисление ароматических спиртов до альдегидов, восстанавливая кислород до перекиси водорода. Арилалкогольоксидаза отмечена у грибов, вызывающих белую гниль древесины: Phanerochaete chrysosporium, Trametes versicolor [13].
Метанолоксидаза (МеО), внеклеточный флавин-содержащий фермент с молекулярной массой 75 кДа, катализирует окисление метанола, выделяющийся при деградации лигнина в реакциях деметилирования фенолов, до формальдегида, восстанавливая кислород до перекиси водорода. Выделена и охарактеризована у Phanerochaete chrysosporium, Trametes versicolor, Panus tigrinus [13].
III. Медьсодержащие ферменты. Разделяют на две группы.
III.1 Голубые оксидазы – лакказа и родственные или им неголубые оксидаза, осуществляющие четырехэлектронное восстановление кислорода до воды с параллельным одно- или двухэлектронным окислением преимущественно фенольным субстратом до соответсвующих феноксирадикалов или хинонов. [8]
Катехолоксидаза участвует в гидроксилировании монофенолов до дифенолов и окислении дифенолов в ортохиноны. Она широко распространена среди микроорганизмов и имеет названия, соответствующие катализируемому субстрату: монофенолоксидаза, полифенолоксидаза, фенолаза, крезолаза, тирозиназа и т. п. [13].
Лакказы (бензидол: кислород оксидоредуктаза, КФ 1.10.3.2) – голубая медьсодержащая оксидаза, которая катализирует четырехэлектронное окисление фенолов, ароматических аминов и фенилендиамина, используя кислород как акцептор электронов с восстановлением его до воды. Практически все исследованные лакказы – это мономеры, гликопротеины с углеводной частью от 1 до 15% массы фермента, которая состоит из остатков маннозы и N-ацетилглюкозамина [16]. Окисляют широкий круг субстратов преимущественно фенольной природы с образованием феноксильных радикалов, а также нефенольные соединения в присутствии специфических электронных переносчиков ABTS или HBT (1-гидроксибензотриазол) [16]. Лакказы древоразрушающих грибов имеют более низким Ph-оптимумом окисления фенольных субстратов, совпадающим с оптимум действия большинства грибных целлюлаз. Так, для лакказ Gaeumannomyces graminis var. tritici, древоразрушающего базидиомицета PM1, Coriolus histris он близок к 4,5Ph, для лакказ других трутовиков (C. zonatus, Tramenas sanguinea, Polyporus pinsitus) составляет 4,9 Ph -5Ph [4].
III.2 Медьсодержащие ферменты, осуществляющие двухэлектронное восстановление кислорода до перекиси с одновременным двухэлектроным окислением подходящей спиртовой или альдегидной группы (глиоксальоксидаза, галактооксидаза) [8].
Наибольшей оксидазной активность обладают штамма Trametes hirsute D-5 и Gerrena unicolor М-2 [18].
Лигнин под действием бурых гнилей преимущественно гидроксилируется и деметилируется и в меньшей степени депомилиризуется. Окисление непосредственно идет до углекислоты с изъятием углерода в основном из боковых цепей и метоксильных групп [13].
Предположительно, лигнинразрущающие ферменты действуют на поверхности гиф, находящихся в контакте с клеточной стенкой. Вместе с тем, разложение наблюдается не только в местах контакта, но и по всей поверхности люмена, если там находятся всего одна-две гифы гриба, и даже в толще вторичной оболочки. Снижение выхода низкомолекулярных продуктов окисления лигнина (ароматических кислот и альдегидов) после обработки древесины лигнинразрушающими грибами объясняет их окислительным и конденсирующим действием. Однако разные грибы в разной степени окисляют и конденсируют остаточный лигнин [4].
Так было показано, что выявленная на поверхности мицелия внеклеточная лакказа штамма гриба Pleurotus ostreatus Dl могут участвовать в начальных этапах метаболизма полициклических ароматических углеводородов (в данной работе хризена). Тогда как гибридная Mn-пероксидаза окисляла образующиеся метаболиты (фталевая кислота) [12].
3. Целлюлитический комплекс дереворазрушающих грибов
Целлюлоза очень ценный материал из которого можно получать множество продуктов, например этанол. Она является наиболее простым компонентом лигноцеллюлозного материала и самым распространенным природным полимером. Его длинные цепи состоят из остатков D-глюкозы соединенных β-1,4 связями. Целлюлоза отличается по строению от крахмала. В целлюлозе полимерные цепи упакованы так, что образуют кристаллоподобную структуру, непроницаемую для воды. Поэтому она не растворяется в воде и устойчива к гидролизу [1].