Механизмы выживания бактерий в окружающей среде
Рефераты >> Биология >> Механизмы выживания бактерий в окружающей среде

Для микроорганизмов, развивающихся на суше, большое значение имеет приспособление к сухости и контакту с воздухом. Условия водного стресса и опасность высыхания создаются на поверхности скал, камней, деревьев, различных сооружений, в почве, особенно почве пустынь. Основными механизмами защиты от высыхания служит образование слизистых капсул или переживающих клеток (спор, конидий, цист). Высокую устойчивость на воздухе обнаруживают многие микобактерии с высоким содержанием липидов в клеточной стенке. Типичными компонентами микроценозов, развивающихся на поверхности камня и в почве, являются микрококки, артробактеры, нокардии, проактиномицеты и актиномицеты. В целом грамположительные бактерии актиномицетной линии рассматривают как континентальную ветвь эволюции прокариот, приспособившуюся к жизни в наземных условиях (Бухарин О.В., 2005).

Жизнеспособность бактерий в условиях недостатка воды определяется многими факторами — температурой, реакцией среды, составом солевого раствора и т. п. Причем бактерии с мелкими клетками устойчивее, чем с крупными; кокки устойчивее палочек; грамположительные бактерии устойчивее к высушиванию, чем грамотрицательные и тем более микоплазмы. Высокой устойчивостью к высушиванию обладают микобактерии, клеточные стенки которых содержат большое количество липидов. Споры не только бактерий, но и других микроорганизмов хорошо переносят высушивание.

В условиях недостатка воды некоторые микроорганизмы обволакиваются гидрофильными слизистыми капсулами, которые активно поглощают влагу. Бактерии, обитающие на корнях пустынных растений, выделяют такие значительные количества гигроскопической слизи, что обеспечивают водой не только самих себя, но и растения.

Существует предположение о том, что при недостатке воды бактерии используют метаболическую воду, образующуюся в клетке в результате окисления органического вещества кислородом воздуха. Так, из 1 кг глюкозы микроорганизм может получить около 600 г воды по уравнению

С6Н1206 + 602 = 6С02 + 6Н20

Устойчивость к обезвоживанию у разных бактерий неодинакова. Например, численность жизнеспособных клеток Pseudomonas, внесенных в воздушно-сухую почву после выдерживания в течение месяца, снижается в 100 раз. В то же время Azotobacter остается жизнеспособным в почве даже через десятки лет ее хранения в воздушно-сухом состоянии Выживаемость азотобактера обусловлена его цистами. Интересны исследования, показавшие, что водный стресс приводит к возрастанию содержания актиномицетов среди других микроорганизмов, обнаруживаемых в почве. Это связано с большей выживаемостью актиномицетов в почве по сравнению с грибами и бактериями. Следовательно, выживаемость микроорганизма в сухой почве существенно возрастает, если он способен формировать те или иные устойчивые формы. Так, вегетативные клетки Pseudomonas довольно чувствительны к водному стрессу, в то время как цисты азотобактера и споры актиномицетов проявляют значительную устойчивость к нему (Покровский В.И., 1999).

Выживаемость актиномицетов. Водный стресс приводит к возрастанию процентного содержания актиномицетов среди всех жизнеспособных микроорганизмов, обнаруживаемых в природных почвенных пробах. Это обусловлено большей выживаемостью актиномицетов в почве по сравнению с грибами и истинными бактериями. Устойчивость актиномицетов к обезвоживанию обусловлена устойчивостью спор.

Таким образом, ясно, что выживаемость бактерий в почве значительно возрастает, если данный организм образует какие-либо устойчивые формы. Вегетативные клетки псевдомонаса обладают чрезвычайно высокой чувствительностью к обезвоживанию, в то время как цисты азотобактера и споры актиномицетов (Streptomyces) значительно более устойчивы.

Arthrobacter не имеет явно выраженной покоящейся или защитной формы в цикле развития. Здесь играет определенную роль переход из палочковидной в шарообразную форму и обратно, который претерпевает Arthrobacter. Шарообразная форма клеток обладает большей устойчивостью к обезвоживанию, чем палочковидная (Кашнер Д., 1981).

5. РЕАКЦИИ МИКРООРГАНИЗМОВ НА ТЯЖЕЛЫЕ МЕТАЛЛЫ И ТОКСИЧНЫЕ ВЕЩЕСТВА В ОКРУЖАЮЩЕЙ СРЕДЕ

Среди микроорганизмов есть формы, устойчивые к действию общих клеточных и метаболических ядовитых веществ (фенол, окись углерода, сероводород и др.), отдельные виды обладают способностью использовать эти соединения в качестве источников питания. Считают, что устойчивость микроорганизмов к токсичным веществам во многих случаях определяется плазмидами.

В выработке устойчивости бактерий к токсичным веществам участвуют трансмиссивные плазмиды, несущие гены множественной устойчивости — R-факторы (от англ. resistance — устойчивость). R - факторы обусловливают устойчивость микроорганизмов к нескольким (девять и более) группам веществ — солям тяжелых металлов, а также антибиотикам, лекарственным веществам, и др. Гены, которые определяют устойчивость бактерий, могут находиться в транспозонах, способных перемещаться в разные участки хромосомы и на плазмиды. Распространению множественной устойчивости бактерий способствует комбинация трансмиссивной плазмиды с транспозоном.

Влияние на микроорганизмы токсичных веществ в небольших концентрациях, не вызывающих их гибели, рассматривают как один из вариантов стрессовых (от англ. stress — напряжение) воздействий. В таких условиях включаются специальные механизмы клеточного метаболизма, которые обеспечивают выживание бактерий (Бухарин О.В., 2005).

Микроорганизмы по-разному реагируют на тяжелые металлы в зависимости от вида микроорганизма и концентрации тяжелых металлов в среде. Это справедливо также для мышьяка и сурьмы. Всем микробам в качестве компонентов питания необходимы те или иные тяжелые металлы, такие, как Со, Си, Fe, Мп и Zn. Некоторые микроорганизмы нуждаются также в Мо, V и Ni. Все эти металлы участвуют в основном в ферментативном катализе и должны присутствовать в питательной среде лишь в очень низких концентрациях, обычно порядка нескольких микрограммов на один литр. Ряд микроорганизмов способен осуществлять активный транспорт некоторых из этих элементов внутрь клетки. Существуют бактерии и грибы, которые вырабатывают специальные хелатобразующие вещества, облегчающие проникновение железа в клетку при нейтральных значениях рН. Это проникновение происходит в результате активного транспорта хелатного железа и распада хелата после его переноса через плазматическую мембрану. Даже токсичный ион арсената может проникнуть в клетку путем активного транспорта, как в случае Saccharomyces cerevisiae.

Любой из металлов, а также мышьяк или сурьма в достаточно высоких концентрациях становятся токсичными для микроорганизмов. Проявления этой токсичности могут быть различными, например изменение морфологии клеток или клеточного метаболизма, бактериостаз или гибель клеток. В некоторых случаях возникают более толерантные к тяжелому металлу, мышьяку или сурьме резистентные штаммы, т. е. такие, для воздействия на которые необходима более высокая концентрация токсичного вещества, чем для воздействия на родительские штаммы. Обычно эта резистентность обусловлена генетическими модификациями, часто связанными с плазмидами, а иногда — с половым фактором или с хромосомами. Причиной повышенной резистентности может быть уменьшение проницаемости клетки для токсичного вещества или его биохимическое обезвреживание. Показано, что исключительная резистентность Scytalidium к меди (выдерживает концентрацию CuS04 до 1 М) обусловлена кислой реакцией среды (рН от 2,0 до 0,3) и неспособностью ионов меди проникать в клетки при таких значениях рН, поскольку при реакции среды, близкой к нейтральной, гриб становится чувствительным к 4 • 10-5 М CuSO4. Одни микробы обезвреживают тяжелые металлы, мышьяк или сурьму, вырабатывая вещества, реагирующие с указанными элементами внутри клетки (например, при метилировании ртути или мышьяка) или вне ее, т. е. делают их недоступными для ассимиляции микробом (например, осаждение арсената или арсенита ионами железа в процессе окисления арсенопирита при участии Thiobacillus ferrooxidans). Другие микроорганизмы нейтрализуют токсичные соединения, превращая их ферментативным путем в менее вредные (примером может служить восстановление HgCl2 до HgO. Физиологическое состояние организма также определяет его чувствительность к интоксикации тяжелыми металлами, мышьяком или сурьмой.


Страница: