Механизмы выживания бактерий в окружающей среде
К подщелачиванию среды приводят дезаминирование белков и аминокислот аммонификаторами, разложение мочевины уробактериями, а также фотоассимиляция С02 (так, в часы интенсивного фотосинтеза значение рН воды в фотической зоне водоема может возрастать на 1 — 2 единицы). Стабильное значение рН среды в некоторых местообитаниях связано с ее буферностью. Наибольшие масштабы имеет карбонат/бикарбонатная система, обеспечивающая постоянство рН вод Мирового океана (Заварзин Г.А., 2001).
Все организмы, растущие при экстремальных значениях рН, располагают, механизмами для поддержания внутриклеточного рН на уровне, близком к нормальным физиологическим величинам. Такие кислотолабильные молекулы, как АТР и ДНК, не смогли бы существовать, если бы внутриклеточная концентрация водородных ионов была такой же, как и во внешней среде. Однако по отношению к внутриклеточной среде трудно применить классическую концепцию рН. Согласно этой концепции, рН является применяемым на практике показателем концентрации или активности ионов водорода в водном растворе, между тем как внутриклеточное содержимое представляет собой коллоидный, а не истинный водный раствор. Измерение величины внутриклеточного рН не дает информации относительно недиссоциированных протонов, связанных с донорными молекулами.
Внутриклеточный рН имеет определенную ценность, так как он дает представление об общих условиях, существующих внутри клетки.
В поддержании градиентов рН в клетке важную роль играет как природа клеточной стенки и мембраны, так и клеточный метаболизм.
4. ЖИЗНЬ МИКРООРГАНИЗМОВ ПРИ ВЫСОКИХ КОНЦЕНТРАЦИЯХ СОЛЕЙ И РАСТВОРЕННЫХ ВЕЩЕСТВ И В УСЛОВИЯХ НЕДОСТАТКА ВОДЫ
В живых клетках вода служит средой, в которой молекулы разных размеров взаимодействуют между собой. Структура воды, в которой находятся растворенные вещества, контролирует все жизненно важные процессы в клетке: действие ферментов и регуляцию их активности, ассоциацию и диссоциацию органелл, структуру мембран и их функционирование. Небольшие изменения в концентрации растворенных веществ и активности воды могут приводить к значительным физиологическим изменениям, поэтому не удивительно, что многоклеточные организмы выработали специальные физиологические механизмы для поддержания постоянного состава не только жидкостей тела, но и внутриклеточной среды. Например, в крови млекопитающих поддерживается равновесие между ионами натрия и калия с помощью сложного гормонального контроля, действующего на уровне почек и основанного на обмене между кровью и тканями.
Однако микробные клетки должны самостоятельно приспосабливаться к внешней водной среде. В качестве «экстремальных условий» можно рассматривать весьма обычные условия, когда клетки растут в растворах, значительно более разбавленных, чем их внутренняя среда, что имеет место у всех пресноводных микроорганизмов. Животные предохраняют от осмотического лизиса клетки своего тела, поддерживая концентрации веществ, растворенных во внеклеточных жидкостях, в соответствии с их концентрациями внутри клеток. Часто их наружный покров совершенно непроницаем для воды. Большинство микроорганизмов покрыто жесткой клеточной стенкой, предотвращающей их лизис в результате высокого осмотического давления, возникающего внутри этих клеток. У простейших, которые имеют более гибкие стенки, проблемы, связанные с высоким осмотическим давлением, решаются другим путем: вода, поступающая в клетки, собирается в сократительные вакуоли, а затем выделяется из них наружу.
Напротив, клетки, растущие при высоких концентрациях растворенных веществ, по-видимому, не способны поддерживать цитоплазму в более разбавленном состоянии. Это было бы возможно только в том случае, если бы клетки были непроницаемы для воды или непрерывно осуществляли активное выделение растворенных веществ. Хотя внутриклеточная среда микроорганизмов по химическому составу сильно отличается от внешней, не известно ни одного вида, который был бы способен поддерживать внутри клеток общую концентрацию растворенных веществ на более низком уровне, чем в окружающей среде (Кашнер Д., 1981).
Известно, что многие внутриклеточные компоненты микроорганизмов нуждаются в высоких концентрациях Na+ и К+. Белки галофилов содержат много аспартата и глутамата, т.е. они более «кислые», в белках устанавливаются новые гидрофобные взаимодействия, приводящие к более плотной упаковке глобул. На поверхности клеток работает механизм «белкового щита» (S-слои), когда наружу экспонируются СООН-группы аминокислот, удерживающие Na+. Эти же группы формируют «гидратированную» оболочку клеток за счет электростатического ориентирования диполей воды. Галофилы осуществляют активный транспорт ионов из клетки, таким образом поддерживая некоторый «осмостаз». Также клетки иногда заменяют Na+ на К+.
Для удержания воды в цитоплазме в условиях высокой солености у галофильных микроорганизмов существуют разнообразные механизмы. Основным механизмом приспособления к осмотическому состоянию среды служит синтез микроорганизмами осмопротекторов (осмолитов, или совместимых растворителей) — низкомолекулярных органических веществ, концентрация которых в цитоплазме уравновешивает внешнее давление (см. табл.1 )
Таблица № 1.
Совместимые растворители (осмолиты)
Организмы |
Совместимый растворитель |
Минимальная о„. |
Бактерии-нефототрофы |
Глицин-бетаин, пролин (у грамположительных), глутамат (у грамотрицательных) |
0,97-0,90 |
Пресноводные цианобак-терии |
Сахароза, трегалоза |
0,98 |
Цианобактерии соленых озер |
Глицин-бетаин |
0,90-0,75 |
Галофильные аноксиген-ные фотогрофные бактерии Edothiorhodospira |
Глицин-бетаин, трегалоза, эктоин |
0,90-0,75 |
Экстремально-галофильные археи |
КС1 (закачивается внутрь с обменом на NaCl) |
0,75 |
Их состав зависит от концентрации NaCl в среде и не одинаков у разных микроорганизмов. К осмопротекторам относятся некоторые аминокислоты и их производные (глутаминовая кислота, пролин), сахара (в частности, трегалоза), гетерогликозиды, полиспирты, глицин-бетаин. При пониженной водной активности организм находится в условиях осмотического стресса, что приводит к уменьшению скорости роста и снижению общего количества образуемой биомассы (Покровский В.И., 1999).
Адаптация к солености у экстремально галофильных архей (порядок Halobacteriales) основана на аккумуляции ионов К+. Внутриклеточная концентрация ионов может быть выше в 1000 раз, чем в окружающей среде, т.е. ферменты галобактерий работают в солевом растворе. Подобная же стратегия обнаружена у некоторых эубактерий — Salinibacter ruber и представителей порядка Haloanaerobiales. Помимо концентрации солей повышенное осмотическое давление и низкая активность воды создаются высоким содержанием органических веществ. Приспособленные к таким условиям организмы называют осмофилами — это спироплазмы, размножающиеся в нектаре цветов, мицелиальные грибы и дрожжи, обитающие в варенье, сиропах, сухофруктах.