Гуманитаризация обучения математикеРефераты >> Педагогика >> Гуманитаризация обучения математике
Учащимся нужно также показать, что дроби применяются не только в математике, но и, например, в музыке.
Все знают, что Пифагор был учёным и, в частности, автором знаменитой теоремы. А то, что он был еще и блестящим музыкантом, известно не так широко. Сочетание этих дарований позволило ему первым догадаться о существовании природного звукоряда. Надо было ещё доказать это. Пифагор построил для своих экспериментов полуинструмент-полуприбор — «монохорд». Это был продолговатый ящик с натянутой поверх него струной. Под струной, на верхней крышке ящика, Пифагор расчертил шкалу, чтобы удобнее было зрительно делить струну на части. Множество опытов проделал Пифагор с монохордом и, в конце концов, описал математически поведение звучащей струны. Работы Пифагора легли в основу науки, которую мы называем сейчас музыкальной акустикой.
Оказывается, для музыки семь звуков внутри октавы такая же естественная вещь, как десять пальцев на руках в арифметике. Уже тетива самого первого лука, колеблясь после выстрела, давала готовым тот набор музыкальных звуков, которыми мы почти без изменения пользуемся до сих пор.
С точки зрения физики тетива и струна — одно и то же. Да и сделал человек струну, обратив внимание на свойства тетивы. Звучащая струна колеблется не только целиком, но одновременно и половинками, третями, четвертями и т.д. Подойдём теперь к этому явлению с арифметической стороны. Половинки колеблются вдвое чаще, чем целая струна, трети — втрое, четверти — вчетверо. Словом, во сколько раз меньше колеблющаяся часть струны, во столько же раз больше частота её колебаний. Допустим, вся струна колеблется с частотой 24 герца. Высчитывая колебания долей вплоть до шестнадцатых, мы получим ряд чисел, показанных в таблице. Эта последовательность частот так и называется — натуральный, т.е. природный, звукоряд.
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
48 |
72 |
96 |
120 |
144 |
168 |
192 |
216 |
240 |
264 |
288 |
321 |
336 |
360 |
384 |
Согласно программе и учебнику по математике формирование понятий дроби начинается с умения получать доли при делении какой-либо величины на несколько равных частей.
Учащимся предлагается разделить на равные части знакомые предметы, такие, как арбуз, дыня, пирог и др., и выделить одну из частей, одну из долей. Такие же по характеру упражнения выполняют учащиеся с использованием геометрического материала: деление отрезка, круга, квадрата на равные части, на равные доли и взятие одной такой части, одной доли. От выделения одной части и взятию нескольких таких частей.
Учащимся сообщается, что для выражения одной или нескольких долей предмета нужны новые числа, а именно дроби. Далее приводятся примеры обыкновенных дробей и даётся форма записи обыкновенной дроби, проводится обучение чтению. Учащиеся должны помнить: числитель дроби — количественное числительное женского рода (одна, две и т.д.), а знаменатель — порядковое числительное (седьмая, сотая, двести тридцатая и т.д.).
Например, — одна пятая; — две шестых; — семь десятых;
— восемьдесят три сто пятьдесят вторых. В процессе работы над закреплением понятия дроби необходимо познакомить учащихся с происхождением слова «дробь», ввести термины «числитель», «знаменатель». Это можно сделать следующим образом.
В начале урока учащимся можно предложить три ребуса:
|
|
|
После их разгадывания можно сообщить им следующие исторические сведения.
С древних времён людям приходилось не только считать предметы, но и измерять длину, время, площадь, вести расчеты за купленные или проданные товары.
Не всегда результат измерения или стоимость товара удавалось выразить натуральным числом. Приходилось учитывать и части, доли меры. Так появились дроби.
В русском языке слово дробь появилось в VIII веке, оно происходит от глагола «дробить» — разбивать, ломать на части. В первых учебниках математики (в VII веке) дроби так и назывались — «ломаные числа». У других народов название дроби также связано с глаголами «ломать», «разбивать», «раздроблять».
Современное обозначение дробей берет свое начало в Дровней Индии; его стали использовать и арабы, а от них в XII-XIV веках оно было заимствовано европейцами. Вначале в записи дробей не использовалась дробная черта; например, числа , записывались так: , . Черта дроби стала постоянно использоваться лишь около трехсот лет назад. Первым европейским ученым, который стал использовать и распространять современную запись дробей, был итальянский купец и путешественник, сын городского писаря Фибоначчи (Леонардо Пизанский). В 1202 г. он ввел слово «дробь». Названия «числитель» и «знаменатель» ввел в XIII веке Максим Плануд — греческий монах, ученый-математик.