Гуманитаризация обучения математике
Рефераты >> Педагогика >> Гуманитаризация обучения математике

Остановимся подробнее на принципах, положенных в основу технологии школьного математического образования, подчеркивая еще раз, что эти принципы должны представлять технологию как педагогическую систему с необходимым перечнем принципов, присущих системному подходу.

Принцип целостности

Этот принцип является одним из наиболее важных. Это означает, что при разработке педагогической системы необходимо добиваться гармонического взаимодействия всех компонентов педагогической системы как по горизонтали (в рамках одного периода обучения – четверти, учебного года), так и по вертикали – на весь период обучения.

Принцип выделения основной структуры системы

Важность данного принципа обосновывается в теории систем И.Д. Пехлецкого. Исследователь считает, что это один из основных принципов, которые должен «наложить свой отпечаток на все фундаментальные определения и понятия теории системы». Причем смысл принципа выделения основной структуры системы состоит в том, что «всякое научное рассмотрение, анализ или моделирование достаточно сложной, абстрактной или реальной системы не возможны без процесса выдвижения на первый план некой части структуры системы.

Конкретизируя все сказанное на примере технологии гуманитаризации школьного математического образования, т.е. конкретной педагогической системы. С позиций целей исследования основной частью такой педагогической системы будет являться математическое содержание. Ко всей же остальной структуре педагогической системы относятся гуманитарные и составные объекты.

Принцип органичности

Принцип органичности означает, что при разработке технологии гуманитаризации школьного математического образования необходимо достичь органичного взаимодействия между математическими и гуманитарными системами культуры. Гуманитарные объекты должны естественным образом включаться в математическое содержание. Этот принцип должен найти отражение, при создании составных объектов, а также всеми компонентами технологии гуманитаризации.

Технология гуманитаризации

школьного математического образования

ОСНОВНЫЕ КОМПОНЕНТЫ

Концептуальный

· позиция ребёнка: множественное воздействие на различные участки головного мозга;

· учебные цели в когнитивной, эмоционально-ценностной, психомоторной областях;

· принципы: выделения основной структуры системы; целостности; органичности.

Содержательный

· математические объекты и логические конструкции;

· гуманитарные и составные объекты.

Деятельностный

· конкретизируются методики формирования мотивации учащимися;

· характеризуются четыре стадии учебно-познавательной деятельности учащихся: репродуктивная, алгоритмическая, эвристическая и творческая.

Программно-методическое обеспечение:

· использование различных видов уроков: от классического до нетрадиционного;

· гуманитаризированные учебники, учебно-методическая литература и др.

Глава II «Практическое применение

элементов технологии гуманитаризации»

2.1 Анализ программы

Изучение программного материала по теме «Дробные числа» дает возможность учащимся:

- овладеть достаточно развитой техникой вычислений с рациональными числами; овладеть навыками устных вычислений;

- овладеть первоначальными навыками работы с приближенными значениями;

- усовершенствовать умения решать, в том числе текстовые задачи на дроби, проценты;

- ознакомить с некоторыми историческими сведениями о возникновении и развитии чисел.

Уровень обязательной подготовки определяется следующими требованиями:

- знать и правильно употреблять термины, связанные с дробными числами: дробное, обыкновенная дробь, десятичная дробь; уметь переходить от одной формы записи чисел к другой;

- уметь сравнивать дробные числа;

- уметь изображать дробные числа на координатной прямой и определять координату точки;

- уметь выполнять сложение, вычитание, умножение, деление, возведение в квадрат и куб обыкновенные и десятичные дроби; приобрести навыки устных вычислений; уметь находить значение числовых выражений;

- округлять десятичные дроби;

- решать основные задачи на дроби и проценты.

На изучение темы «Дробные числа» программой отводится в общем 64 ч в 5 кл. и 58 ч в 6 кл. За это время учащиеся должны овладеть всеми знаниями и умениями, представленными выше. Однако, помимо знаний обязательного материала они могут получить и дополнительный материал, представленный информацией из области других предметов: истории, литературы, географии и др.

2.2 Особенности содержания и структуры курса

Для всего курса характерны опора на здравый смысл и интуицию, развития умения применять математику в реальной жизни, знакомство с математикой как частью общечеловеческой культуры. Содержание курса развивается “по спирали”, что позволяет неоднократно возвращаться к знакомому материалу на новом уровне, формировать системные знания; при этом последовательно реализуется принцип “разделения трудностей”.

В 5-6 классах усилено внимание к арифметике и арифметическим (т.е. логическим) методам решения задач. Существенно повышена роль геометрического материала: здесь представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений.

Методический аппарат учебников. Учебники включают в себя как объяснительный текст, так и богатую систему упражнений, распределенных по уровню сложности в группы А и Б. В систему упражнений включаются советы, указания, образцы решений, интересные для учащихся формы заданий – задания с выбором ответа, задачи-исследования.

Во всех книгах присутствует рубрика «Для тех, кому интересно» - это обязательный материал, позволяющий расширить и углубить знания учащихся. Каждую главу завершает рубрика «Задания для самопроверки», в которой представлены обязательные результаты обучения.

Рассмотрим и проанализируем содержание и оформление основных учебников используемых в настоящее время в работе учителями школ.

Большинство учителей используют учебники: Нурка Э. П. (А. Е. Тельгмаа), Виленкина ( Чеснокова, Шварцбурга, Жокова).

Выясним основные содержания этих учебников:

Нурк

Виленкин

5 класс

1. Нат. числа, «+» и “-“

2. «x» и «:» нат. Чисел

3. Углы, треугольники и прямоугольники.

4. Дробные числа, сложение и вычитание десятичных дробей.

5. «x» и «:» десятичных дробей.  

1. Натуральные числа.

2. Дробные числа.

6 класс

1. Делимость нат. чисел.

2. Обыкновенные дроби, «+» и «-»

3. «x» дробей.

4. «:» дробей, пропорции.

5. Положительные и отрицательные числа, система координат.

6. Действия с рациональными числами.  

1. Обыкновенные дроби.

2. Рациональные числа.  


Страница: