Влияние использования схем, чертежей, иллюстраций на формирование ЗУН при обучении младших школьников решению задач на движение
Рефераты >> Педагогика >> Влияние использования схем, чертежей, иллюстраций на формирование ЗУН при обучении младших школьников решению задач на движение

- Найдите значение выражений, применив сочетательный или распределительный закон. Соедините стрелкой примеры из двух столбиков.

(428 * 25) * 4 =

125 * 25 * 96 * 48 =

(273 * 38 – 38 * 237) =

(26 * 52 + 48 * 26) : 100 =

(а * в) * с = а * (в * с)

а * (в + с) = а * в + а * с

а * (в - с) = а * в - а * с

- Следующие задания.

Учитель показывает числа вразнобой, учащиеся должны умножить их на 15 и записать результаты в тетрадь.

1

2

3

4

5

6

7

8

9

15

30

45

60

75

90

105

120

135

- Теперь вы должны решить примеры, записанные на доске.

На доске.

98 : 14

90 : 15

84 : 6

56 : 4

45 : 15

105 : 15

126 : 9

98 : 7

112 : 14

90 : 6

56 : 14

75 : 15

42 : 3

135 : 9

60 : 4

75 : 5

120 : 15

60 : 15

84 : 14

135 : 15

Оба задания учитель проверяет позже.

Ш. Тема урока

У. Какие величины участвуют в задачах на движение?

Дети. Скорость, время, расстояние.

У. Как найти скорость, время, расстояние?

Д. Скорость равна расстоянию, деленному на время. Записывается формулой. V = S: t.

- Время находим, если расстояние разделим на скорость. Вычисляется с помощью формулы t = V : S

Расстояние найдем, если скорость умножим на время. Формула S = V * t

У. Предлагаю задачи-разминки. Решать их будем устно.

Голубь улетел на расстояние 420 км. Через сколько часов он вернется, если его скорость равна 60 км/ч?

Д. Через 7 часов.

У. Из двух городов вышли навстречу друг другу два поезда. Один вышел в 8 часов, а другой – в 10 часов. Встретились они в 12 часов. Сколько часов был в пути каждый поезд до встречи?

Д. Один – 4 часа, другой – 2 часа.

У. Когда автомобиль движется точно со скоростью поезда?

Д. Когда погружен на платформу.

У. От двух пристаней, находящихся на расстоянии 510 км, отплыли одновременно навстречу друг другу катер и моторная лодка. Встреча произошла через 15 часов. Катер шел со скоростью 19 км/ч. С какой скоростью шла моторная лодка?

Учитель записывает условие задачи на доске.

? 19 км/ч

15ч

А В

510 км

- Еще раз внимательно вчитайтесь в задачу. О каких величинах идет в ней речь?

Д. О скорости, времени и расстоянии.

У. Что известно?

Д. Расстояние – 510 км, катер со скоростью 19 км/ч. Встреча произошла через 15 часов. Известно, что они отплыли одновременно.

У. Что надо узнать?

Д. С какой скоростью шла моторная лодка.

У. Что надо знать, чтобы найти скорость?

Д. Зная расстояние и время, найдем скорость сближения, а затем скорость моторной лодки.

Дети проговаривают, а затем один ученик записывает на доске.

510 : 15 – 19 = 15 (км/ч) – скорость моторной лодки.

У. Составьте обратные задачи на нахождение скорости, времени и расстояния. Работайте в тетрадях. Кратко запишите условие, а задачи составьте и расскажите устно.

Дети выполняют задания. Один-два ученика рассказывают задачи.

Варианты записи решения.

(1) , 15 км/ч, 15 ч, 510 км.

Решение: 510 : 15 – 15 = 19 (км/ч) – скорость катера.

(2) 19 км/ч, 15 км/ч, , 510 км.

Решение: 510 : (19 + 15) = 15 (км/ч) - время, через которое встретятся катер и моторная лодка.

(3) 19 км/ч, 15 км/ч, 15ч .

Решение: (19 + 15) * 15 = 510 (км) – расстояние между пристанями.

У. А теперь с этими данными составим задачу на движение в противоположном направлении.

(4)

15км/ч 19 км/ч

А В

510 км

Решение: 510 : (15 + 19) = 15 часов – время, через которое расстояние между моторной лодкой и катером будет 510 км.

- Сравним (2) и (4) задачи! Почему выражения, составленные по задачам, получились одинаковые?

Д. Скорость сближения и удаления находим сложением.

У. Сравните схемы двух задач и скажите, чем он отличаются друг от друга.

Дети записывают схемы.

Д. Первая схема подходит к задачам на движение навстречу и в противоположном направлениях, а вторая – к задачам на движение вдогонку.

У. А сейчас у нас самостоятельная работа на решение задач на движение при помощи уравнений.

IV. Самостоятельная работа

У. Рассмотрите таблицу, записанную на доске.

На доске.

Параметры

Животные

V

t

S

Акула

Кит

Дельфин

?

?

?

2 ч

6 ч

3 ч

72 км

240 км

180 км

Дети выполняют задание.

- Найдите скорости акулы, кита и дельфина, составив уравнения, но прежде назовите, кто из этих животных млекопитающие, а кто рыбы.

Д. Акула – рыбы, а кит и дельфин – млекопитающие.

У. Первый ряд найдет скорость акулы. Второй – кита, а третий – дельфина.

Дети работают самостоятельно.

1-й ряд

х км/ч – скорость акулы

х * 2 = 72

х = 72 : 2

х = 36

36 км/ч – скорость акулы

2-й ряд

с км/ч – скорость кита

с * 6 = 240

с = 240 : 6


Страница: