Управление портфелем краткосрочных государственных ценных бумаг
На практике бескупонные облигации, как правило, краткосрочные ценные бумаги, т.е. «реальные» бескупонные облигации со сроком обращения свыше одного года, могут отсутствовать на финансовом рынке. Однако активы, подобные бескупонным облигациям с различными сроками обращения, могут быть получены на основе купонных облигаций. Действительно, купонную Т-периодную облигацию можно рассматривать как портфель, состоящий из Т+1 бескупонной облигации, если предположить, что каждый из Т купонов и финальная выплата являются самостоятельными облигациями.
В качестве спот-ставок на практике используют доходности к погашению бескупонных государственных облигаций или соответствующих им активов в виде платежей по купонным государственным облигациям.
Данные активы имеют фиксированные сроки обращения и цены погашения. Они не предусматривают промежуточных выплат и, как правило, свободны от риска невыполнения обязательств со стороны эмитента. Поэтому можно считать, что они имеют фиксированную доходность, не подверженную риску невыполнения обязательств (default risk), а также риску изменения процентных ставок (interest rate risk) при совпадении срока инвестирования и срока обращения облигации. В этом смысле бескупонные облигации можно считать безрисковыми активами, что делает их привлекательными для инвесторов. В США рынок подобных активов функционирует в рамках программы STRIPS (Separate Trading of Registered Interest and Principal Securities), разработанной Казначейством США.
Практика показывает, что ставки доходности к погашению (Yield To Maturity - YTM) зависят от срока, оставшегося до погашения облигаций. Подобную зависимость принято называть временной структурой процентных ставок (term structure of interest rate).
Для описания временной структуры процентных ставок на финансовом рынке используется последовательность спот-ставок где Т- некоторый фиксированный максимальный срок обращения долговых ценных бумаг.
Наличие временной структуры процентных ставок приводит к тому, что краткосрочные, среднесрочные и долгосрочные спот-ставки различаются по величине, т.е. имеет место условие:
(19)
Величина и характер различия спот-ставок меняются с течением времени. Представление о временной структуре процентных ставок может быть получено посредством построения кривой доходности.
2) Кривая доходности.
Кривая доходности (yield curve) - это график зависимости доходности ценных бумаг (YTM) от срока, оставшегося до их погашения.
Кривая доходности может иметь различную форму, например, возрастать или убывать (рис. 1). Заметим, что если бы процентные ставки не зависели от времени, то кривая доходности представляла бы собой прямую горизонтальную линию, проходящую через некоторую точку R на оси ординат. Кривая доходности меняется ежедневно и на практике, очевидно, не является такой гладкой, как это изображено на рисунке.
Причиной "размытости" кривой доходности являются различные специфические особенности ценных бумаг, оказывающие влияние на их доходность. Анализ и интерпретация кривой доходности важны при оценке долговых ценных бумаг.
Рис. 1. Примеры кривых доходностей
Попыткам объяснить форму кривой доходности посвящены теории временной структуры процентных ставок, основанные на различных гипотезах относительно поведения участников рынка. Наиболее известными из этих теорий являются:
· теория ожиданий (Expectations Hypothesis);
· теория чистых ожиданий (Pure Expectations Hypothesis);
· теория предпочтения ликвидности (Liquidity Preference Hypothesis);
· теория сегментации рынка (Market Segmentation Hypothesis).
3) Текущая стоимость облигаций.
Финансовая информация в виде значений спот-ставок обычно доступна участникам рынка, причем последовательность на развитых рынках охватывает все типовые сроки обращения долговых обязательств, имеющихся на данном рынке. Например, подобная информация на основе казначейских ценных бумаг США регулярно публикуется в выпусках Бюллетеня Казначейства (Treasury Bulletin). Это позволяет финансовым аналитикам оценивать текущую стоимость произвольного долгового обязательства на основе метода дисконтирования платежей. В качестве ставок дисконтирования при этом используются соответствующие спот-ставки. Проиллюстрируем это на примере купонной облигации.
Пусть имеется Т-периодная купонная облигация и для всех периодов выплат купонного дохода известны спот-ставки . Тогда текущая стоимость купонной облигации определяется по формуле:
(20)
или
(21)
где - текущая стоимость платежа за период t (t=l, 2, ., Т), которую можно рассматривать как текущую стоимость t-периодной бескупонной облигации.
Таким образом, купонную Т-периодную облигацию можно рассматривать как "портфель" из Т бескупонных облигаций с последовательными сроками погашения .
Форвардные ставки и цены облигаций
Во многих практических задачах, например при покупке или продаже облигаций на фьючерсных рынках, появляется необходимость в определении стоимости и ожидаемой доходности облигаций в будущие периоды.
В связи с этим возникает еще один тип процентных ставок, известных как форвардные ставки.
1) Форвардные ставки.
Форвардными ставками (forward rates) в широком смысле принято называть ставки, которые фиксируются в текущий момент относительно займов или кредитов, которые должны быть получены или предоставлены в некоторый будущий период.
Применительно к долговым ценным бумагам под форвардной ставкой будем иметь в виду ставку, которая устанавливается в текущий момент и характеризует доходность к погашению ценной бумаги, соответствующую некоторому будущему периоду владения.
Обозначим: - ставка доходности к погашению в периоде t бескупонной облигации со сроком обращения, равным Т-периодам.
Пусть известна временная структура процентных ставок в виде последовательности спот-ставок , t=l, 2, ., Т. Тогда ставки , удовлетворяющие условию
(1+0)Т=, =1, 2, ., Т-1, Т>1, (22)